Metamath Proof Explorer


Theorem bcmono

Description: The binomial coefficient is monotone in its second argument, up to the midway point. (Contributed by Mario Carneiro, 5-Mar-2014)

Ref Expression
Assertion bcmono N0BABN2(NA)(NB)

Proof

Step Hyp Ref Expression
1 simpl2 N0BABN20ABA
2 simpl1 N0BABN20AN0
3 eluzel2 BAA
4 3 3ad2ant2 N0BABN2A
5 4 anim1i N0BABN20AA0A
6 elnn0z A0A0A
7 5 6 sylibr N0BABN20AA0
8 simpl3 N0BABN20ABN2
9 breq1 x=AxN2AN2
10 oveq2 x=A(Nx)=(NA)
11 10 breq2d x=A(NA)(Nx)(NA)(NA)
12 9 11 imbi12d x=AxN2(NA)(Nx)AN2(NA)(NA)
13 12 imbi2d x=AN0A0xN2(NA)(Nx)N0A0AN2(NA)(NA)
14 breq1 x=kxN2kN2
15 oveq2 x=k(Nx)=(Nk)
16 15 breq2d x=k(NA)(Nx)(NA)(Nk)
17 14 16 imbi12d x=kxN2(NA)(Nx)kN2(NA)(Nk)
18 17 imbi2d x=kN0A0xN2(NA)(Nx)N0A0kN2(NA)(Nk)
19 breq1 x=k+1xN2k+1N2
20 oveq2 x=k+1(Nx)=(Nk+1)
21 20 breq2d x=k+1(NA)(Nx)(NA)(Nk+1)
22 19 21 imbi12d x=k+1xN2(NA)(Nx)k+1N2(NA)(Nk+1)
23 22 imbi2d x=k+1N0A0xN2(NA)(Nx)N0A0k+1N2(NA)(Nk+1)
24 breq1 x=BxN2BN2
25 oveq2 x=B(Nx)=(NB)
26 25 breq2d x=B(NA)(Nx)(NA)(NB)
27 24 26 imbi12d x=BxN2(NA)(Nx)BN2(NA)(NB)
28 27 imbi2d x=BN0A0xN2(NA)(Nx)N0A0BN2(NA)(NB)
29 bccl N0A(NA)0
30 29 nn0red N0A(NA)
31 30 leidd N0A(NA)(NA)
32 31 a1d N0AAN2(NA)(NA)
33 32 expcom AN0AN2(NA)(NA)
34 33 adantrd AN0A0AN2(NA)(NA)
35 eluzelz kAk
36 35 3ad2ant1 kAN0A0k
37 36 zred kAN0A0k
38 37 lep1d kAN0A0kk+1
39 peano2re kk+1
40 37 39 syl kAN0A0k+1
41 nn0re N0N
42 41 3ad2ant2 kAN0A0N
43 42 rehalfcld kAN0A0N2
44 letr kk+1N2kk+1k+1N2kN2
45 37 40 43 44 syl3anc kAN0A0kk+1k+1N2kN2
46 38 45 mpand kAN0A0k+1N2kN2
47 46 imim1d kAN0A0kN2(NA)(Nk)k+1N2(NA)(Nk)
48 eluznn0 A0kAk0
49 41 3ad2ant2 k0N0k+1N2N
50 nn0re k0k
51 50 3ad2ant1 k0N0k+1N2k
52 nn0p1nn k0k+1
53 52 3ad2ant1 k0N0k+1N2k+1
54 53 nnnn0d k0N0k+1N2k+10
55 54 nn0red k0N0k+1N2k+1
56 53 nncnd k0N0k+1N2k+1
57 56 2timesd k0N0k+1N22k+1=k+1+k+1
58 simp3 k0N0k+1N2k+1N2
59 2re 2
60 2pos 0<2
61 59 60 pm3.2i 20<2
62 61 a1i k0N0k+1N220<2
63 lemuldiv2 k+1N20<22k+1Nk+1N2
64 55 49 62 63 syl3anc k0N0k+1N22k+1Nk+1N2
65 58 64 mpbird k0N0k+1N22k+1N
66 57 65 eqbrtrrd k0N0k+1N2k+1+k+1N
67 51 lep1d k0N0k+1N2kk+1
68 49 51 55 55 66 67 lesub3d k0N0k+1N2k+1Nk
69 nnre k+1k+1
70 nngt0 k+10<k+1
71 69 70 jca k+1k+10<k+1
72 53 71 syl k0N0k+1N2k+10<k+1
73 nn0z N0N
74 73 3ad2ant2 k0N0k+1N2N
75 nn0z k0k
76 75 3ad2ant1 k0N0k+1N2k
77 74 76 zsubcld k0N0k+1N2Nk
78 49 rehalfcld k0N0k+1N2N2
79 49 59 jctir k0N0k+1N2N2
80 nn0ge0 N00N
81 80 3ad2ant2 k0N0k+1N20N
82 1le2 12
83 81 82 jctir k0N0k+1N20N12
84 lemulge12 N20N12N2 N
85 79 83 84 syl2anc k0N0k+1N2N2 N
86 ledivmul NN20<2N2NN2 N
87 49 49 62 86 syl3anc k0N0k+1N2N2NN2 N
88 85 87 mpbird k0N0k+1N2N2N
89 55 78 49 58 88 letrd k0N0k+1N2k+1N
90 1red k0N0k+1N21
91 51 90 49 leaddsub2d k0N0k+1N2k+1N1Nk
92 89 91 mpbid k0N0k+1N21Nk
93 elnnz1 NkNk1Nk
94 77 92 93 sylanbrc k0N0k+1N2Nk
95 nnre NkNk
96 nngt0 Nk0<Nk
97 95 96 jca NkNk0<Nk
98 94 97 syl k0N0k+1N2Nk0<Nk
99 faccl N0N!
100 99 3ad2ant2 k0N0k+1N2N!
101 nnm1nn0 NkN-k-10
102 faccl N-k-10N-k-1!
103 94 101 102 3syl k0N0k+1N2N-k-1!
104 faccl k0k!
105 104 3ad2ant1 k0N0k+1N2k!
106 103 105 nnmulcld k0N0k+1N2N-k-1!k!
107 nnrp N!N!+
108 nnrp N-k-1!k!N-k-1!k!+
109 rpdivcl N!+N-k-1!k!+N!N-k-1!k!+
110 107 108 109 syl2an N!N-k-1!k!N!N-k-1!k!+
111 100 106 110 syl2anc k0N0k+1N2N!N-k-1!k!+
112 111 rpregt0d k0N0k+1N2N!N-k-1!k!0<N!N-k-1!k!
113 lediv2 k+10<k+1Nk0<NkN!N-k-1!k!0<N!N-k-1!k!k+1NkN!N-k-1!k!NkN!N-k-1!k!k+1
114 72 98 112 113 syl3anc k0N0k+1N2k+1NkN!N-k-1!k!NkN!N-k-1!k!k+1
115 68 114 mpbid k0N0k+1N2N!N-k-1!k!NkN!N-k-1!k!k+1
116 facnn2 NkNk!=N-k-1!Nk
117 94 116 syl k0N0k+1N2Nk!=N-k-1!Nk
118 117 oveq1d k0N0k+1N2Nk!k!=N-k-1!Nkk!
119 103 nncnd k0N0k+1N2N-k-1!
120 105 nncnd k0N0k+1N2k!
121 77 zcnd k0N0k+1N2Nk
122 119 120 121 mul32d k0N0k+1N2N-k-1!k!Nk=N-k-1!Nkk!
123 118 122 eqtr4d k0N0k+1N2Nk!k!=N-k-1!k!Nk
124 123 oveq2d k0N0k+1N2N!Nk!k!=N!N-k-1!k!Nk
125 0zd k0N0k+1N20
126 nn0ge0 k00k
127 126 3ad2ant1 k0N0k+1N20k
128 51 55 49 67 89 letrd k0N0k+1N2kN
129 125 74 76 127 128 elfzd k0N0k+1N2k0N
130 bcval2 k0N(Nk)=N!Nk!k!
131 129 130 syl k0N0k+1N2(Nk)=N!Nk!k!
132 100 nncnd k0N0k+1N2N!
133 106 nncnd k0N0k+1N2N-k-1!k!
134 106 nnne0d k0N0k+1N2N-k-1!k!0
135 94 nnne0d k0N0k+1N2Nk0
136 132 133 121 134 135 divdiv1d k0N0k+1N2N!N-k-1!k!Nk=N!N-k-1!k!Nk
137 124 131 136 3eqtr4d k0N0k+1N2(Nk)=N!N-k-1!k!Nk
138 nn0cn N0N
139 138 3ad2ant2 k0N0k+1N2N
140 nn0cn k0k
141 140 3ad2ant1 k0N0k+1N2k
142 1cnd k0N0k+1N21
143 139 141 142 subsub4d k0N0k+1N2N-k-1=Nk+1
144 143 eqcomd k0N0k+1N2Nk+1=N-k-1
145 144 fveq2d k0N0k+1N2Nk+1!=N-k-1!
146 facp1 k0k+1!=k!k+1
147 146 3ad2ant1 k0N0k+1N2k+1!=k!k+1
148 145 147 oveq12d k0N0k+1N2Nk+1!k+1!=N-k-1!k!k+1
149 119 120 56 mulassd k0N0k+1N2N-k-1!k!k+1=N-k-1!k!k+1
150 148 149 eqtr4d k0N0k+1N2Nk+1!k+1!=N-k-1!k!k+1
151 150 oveq2d k0N0k+1N2N!Nk+1!k+1!=N!N-k-1!k!k+1
152 53 nnzd k0N0k+1N2k+1
153 54 nn0ge0d k0N0k+1N20k+1
154 125 74 152 153 89 elfzd k0N0k+1N2k+10N
155 bcval2 k+10N(Nk+1)=N!Nk+1!k+1!
156 154 155 syl k0N0k+1N2(Nk+1)=N!Nk+1!k+1!
157 53 nnne0d k0N0k+1N2k+10
158 132 133 56 134 157 divdiv1d k0N0k+1N2N!N-k-1!k!k+1=N!N-k-1!k!k+1
159 151 156 158 3eqtr4d k0N0k+1N2(Nk+1)=N!N-k-1!k!k+1
160 115 137 159 3brtr4d k0N0k+1N2(Nk)(Nk+1)
161 160 3exp k0N0k+1N2(Nk)(Nk+1)
162 48 161 syl A0kAN0k+1N2(Nk)(Nk+1)
163 162 3impia A0kAN0k+1N2(Nk)(Nk+1)
164 163 3coml kAN0A0k+1N2(Nk)(Nk+1)
165 simp2 kAN0A0N0
166 nn0z A0A
167 166 3ad2ant3 kAN0A0A
168 165 167 29 syl2anc kAN0A0(NA)0
169 168 nn0red kAN0A0(NA)
170 bccl N0k(Nk)0
171 165 36 170 syl2anc kAN0A0(Nk)0
172 171 nn0red kAN0A0(Nk)
173 36 peano2zd kAN0A0k+1
174 bccl N0k+1(Nk+1)0
175 165 173 174 syl2anc kAN0A0(Nk+1)0
176 175 nn0red kAN0A0(Nk+1)
177 letr (NA)(Nk)(Nk+1)(NA)(Nk)(Nk)(Nk+1)(NA)(Nk+1)
178 169 172 176 177 syl3anc kAN0A0(NA)(Nk)(Nk)(Nk+1)(NA)(Nk+1)
179 178 expcomd kAN0A0(Nk)(Nk+1)(NA)(Nk)(NA)(Nk+1)
180 164 179 syld kAN0A0k+1N2(NA)(Nk)(NA)(Nk+1)
181 180 a2d kAN0A0k+1N2(NA)(Nk)k+1N2(NA)(Nk+1)
182 47 181 syld kAN0A0kN2(NA)(Nk)k+1N2(NA)(Nk+1)
183 182 3expib kAN0A0kN2(NA)(Nk)k+1N2(NA)(Nk+1)
184 183 a2d kAN0A0kN2(NA)(Nk)N0A0k+1N2(NA)(Nk+1)
185 13 18 23 28 34 184 uzind4 BAN0A0BN2(NA)(NB)
186 185 3imp BAN0A0BN2(NA)(NB)
187 1 2 7 8 186 syl121anc N0BABN20A(NA)(NB)
188 simpl1 N0BABN2A<0N0
189 4 adantr N0BABN2A<0A
190 animorrl N0BABN2A<0A<0N<A
191 bcval4 N0AA<0N<A(NA)=0
192 188 189 190 191 syl3anc N0BABN2A<0(NA)=0
193 simpl2 N0BABN2A<0BA
194 eluzelz BAB
195 193 194 syl N0BABN2A<0B
196 bccl N0B(NB)0
197 188 195 196 syl2anc N0BABN2A<0(NB)0
198 197 nn0ge0d N0BABN2A<00(NB)
199 192 198 eqbrtrd N0BABN2A<0(NA)(NB)
200 0re 0
201 4 zred N0BABN2A
202 lelttric 0A0AA<0
203 200 201 202 sylancr N0BABN20AA<0
204 187 199 203 mpjaodan N0BABN2(NA)(NB)