Metamath Proof Explorer


Theorem binomcxplemdvsum

Description: Lemma for binomcxp . The derivative of the generalized sum in binomcxplemnn0 . Part of remark "This convergence allows to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φA+
binomcxp.b φB
binomcxp.lt φB<A
binomcxp.c φC
binomcxplem.f F=j0CC𝑐j
binomcxplem.s S=bk0Fkbk
binomcxplem.r R=supr|seq0+Srdom*<
binomcxplem.e E=bkkFkbk1
binomcxplem.d D=abs-10R
binomcxplem.p P=bDk0Sbk
Assertion binomcxplemdvsum φDP=bDkEbk

Proof

Step Hyp Ref Expression
1 binomcxp.a φA+
2 binomcxp.b φB
3 binomcxp.lt φB<A
4 binomcxp.c φC
5 binomcxplem.f F=j0CC𝑐j
6 binomcxplem.s S=bk0Fkbk
7 binomcxplem.r R=supr|seq0+Srdom*<
8 binomcxplem.e E=bkkFkbk1
9 binomcxplem.d D=abs-10R
10 binomcxplem.p P=bDk0Sbk
11 nfcv _babs-1
12 nfcv _b0
13 nfcv _b.
14 nfcv _b+
15 nfmpt1 _bbk0Fkbk
16 6 15 nfcxfr _bS
17 nfcv _br
18 16 17 nffv _bSr
19 12 14 18 nfseq _bseq0+Sr
20 19 nfel1 bseq0+Srdom
21 nfcv _b
22 20 21 nfrabw _br|seq0+Srdom
23 nfcv _b*
24 nfcv _b<
25 22 23 24 nfsup _bsupr|seq0+Srdom*<
26 7 25 nfcxfr _bR
27 12 13 26 nfov _b0R
28 11 27 nfima _babs-10R
29 9 28 nfcxfr _bD
30 nfcv _yD
31 nfcv _yk0Sbk
32 nfcv _b0
33 nfcv _by
34 16 33 nffv _bSy
35 nfcv _bm
36 34 35 nffv _bSym
37 32 36 nfsum _bm0Sym
38 simpl b=yk0b=y
39 38 fveq2d b=yk0Sb=Sy
40 39 fveq1d b=yk0Sbk=Syk
41 40 sumeq2dv b=yk0Sbk=k0Syk
42 nfcv _mSyk
43 nfcv _k
44 nfmpt1 _kk0Fkbk
45 43 44 nfmpt _kbk0Fkbk
46 6 45 nfcxfr _kS
47 nfcv _ky
48 46 47 nffv _kSy
49 nfcv _km
50 48 49 nffv _kSym
51 fveq2 k=mSyk=Sym
52 42 50 51 cbvsumi k0Syk=m0Sym
53 41 52 eqtrdi b=yk0Sbk=m0Sym
54 29 30 31 37 53 cbvmptf bDk0Sbk=yDm0Sym
55 10 54 eqtri P=yDm0Sym
56 ovexd φj0CC𝑐jV
57 5 a1i φF=j0CC𝑐j
58 5 a1i φk0F=j0CC𝑐j
59 simpr φk0j=kj=k
60 59 oveq2d φk0j=kCC𝑐j=CC𝑐k
61 simpr φk0k0
62 4 adantr φk0C
63 62 61 bcccl φk0CC𝑐k
64 58 60 61 63 fvmptd φk0Fk=CC𝑐k
65 64 63 eqeltrd φk0Fk
66 56 57 65 fmpt2d φF:0
67 nfcv _r
68 nfcv _z
69 nfv zseq0+Srdom
70 nfcv _r0
71 nfcv _r+
72 nfcv _rbk0Fkbk
73 6 72 nfcxfr _rS
74 nfcv _rz
75 73 74 nffv _rSz
76 70 71 75 nfseq _rseq0+Sz
77 76 nfel1 rseq0+Szdom
78 fveq2 r=zSr=Sz
79 78 seqeq3d r=zseq0+Sr=seq0+Sz
80 79 eleq1d r=zseq0+Srdomseq0+Szdom
81 67 68 69 77 80 cbvrabw r|seq0+Srdom=z|seq0+Szdom
82 81 supeq1i supr|seq0+Srdom*<=supz|seq0+Szdom*<
83 7 82 eqtri R=supz|seq0+Szdom*<
84 6 fveq1i Sz=bk0Fkbkz
85 seqeq3 Sz=bk0Fkbkzseq0+Sz=seq0+bk0Fkbkz
86 84 85 ax-mp seq0+Sz=seq0+bk0Fkbkz
87 86 eleq1i seq0+Szdomseq0+bk0Fkbkzdom
88 87 rabbii z|seq0+Szdom=z|seq0+bk0Fkbkzdom
89 88 supeq1i supz|seq0+Szdom*<=supz|seq0+bk0Fkbkzdom*<
90 7 82 89 3eqtrri supz|seq0+bk0Fkbkzdom*<=R
91 90 eleq1i supz|seq0+bk0Fkbkzdom*<R
92 90 oveq2i x+supz|seq0+bk0Fkbkzdom*<=x+R
93 92 oveq1i x+supz|seq0+bk0Fkbkzdom*<2=x+R2
94 eqid x+1=x+1
95 91 93 94 ifbieq12i ifsupz|seq0+bk0Fkbkzdom*<x+supz|seq0+bk0Fkbkzdom*<2x+1=ifRx+R2x+1
96 oveq1 w=bwk=bk
97 96 oveq2d w=bFkwk=Fkbk
98 97 mpteq2dv w=bk0Fkwk=k0Fkbk
99 98 cbvmptv wk0Fkwk=bk0Fkbk
100 99 fveq1i wk0Fkwkz=bk0Fkbkz
101 seqeq3 wk0Fkwkz=bk0Fkbkzseq0+wk0Fkwkz=seq0+bk0Fkbkz
102 100 101 ax-mp seq0+wk0Fkwkz=seq0+bk0Fkbkz
103 102 eleq1i seq0+wk0Fkwkzdomseq0+bk0Fkbkzdom
104 103 rabbii z|seq0+wk0Fkwkzdom=z|seq0+bk0Fkbkzdom
105 104 supeq1i supz|seq0+wk0Fkwkzdom*<=supz|seq0+bk0Fkbkzdom*<
106 105 eleq1i supz|seq0+wk0Fkwkzdom*<supz|seq0+bk0Fkbkzdom*<
107 105 oveq2i x+supz|seq0+wk0Fkwkzdom*<=x+supz|seq0+bk0Fkbkzdom*<
108 107 oveq1i x+supz|seq0+wk0Fkwkzdom*<2=x+supz|seq0+bk0Fkbkzdom*<2
109 106 108 94 ifbieq12i ifsupz|seq0+wk0Fkwkzdom*<x+supz|seq0+wk0Fkwkzdom*<2x+1=ifsupz|seq0+bk0Fkbkzdom*<x+supz|seq0+bk0Fkbkzdom*<2x+1
110 109 oveq2i x+ifsupz|seq0+wk0Fkwkzdom*<x+supz|seq0+wk0Fkwkzdom*<2x+1=x+ifsupz|seq0+bk0Fkbkzdom*<x+supz|seq0+bk0Fkbkzdom*<2x+1
111 110 oveq1i x+ifsupz|seq0+wk0Fkwkzdom*<x+supz|seq0+wk0Fkwkzdom*<2x+12=x+ifsupz|seq0+bk0Fkbkzdom*<x+supz|seq0+bk0Fkbkzdom*<2x+12
112 111 oveq2i 0ballabsx+ifsupz|seq0+wk0Fkwkzdom*<x+supz|seq0+wk0Fkwkzdom*<2x+12=0ballabsx+ifsupz|seq0+bk0Fkbkzdom*<x+supz|seq0+bk0Fkbkzdom*<2x+12
113 6 55 66 83 9 95 112 pserdv2 φDP=yDnnFnyn1
114 cnvimass abs-10Rdomabs
115 9 114 eqsstri Ddomabs
116 absf abs:
117 116 fdmi domabs=
118 115 117 sseqtri D
119 118 sseli yDy
120 8 a1i φyE=bkkFkbk1
121 simplr φyb=ykb=y
122 121 oveq1d φyb=ykbk1=yk1
123 122 oveq2d φyb=ykkFkbk1=kFkyk1
124 123 mpteq2dva φyb=ykkFkbk1=kkFkyk1
125 simpr φyy
126 nnex V
127 126 mptex kkFkyk1V
128 127 a1i φykkFkyk1V
129 120 124 125 128 fvmptd φyEy=kkFkyk1
130 129 adantr φynEy=kkFkyk1
131 simpr φynk=nk=n
132 131 fveq2d φynk=nFk=Fn
133 131 132 oveq12d φynk=nkFk=nFn
134 131 oveq1d φynk=nk1=n1
135 134 oveq2d φynk=nyk1=yn1
136 133 135 oveq12d φynk=nkFkyk1=nFnyn1
137 simpr φynn
138 ovexd φynnFnyn1V
139 130 136 137 138 fvmptd φynEyn=nFnyn1
140 139 sumeq2dv φynEyn=nnFnyn1
141 119 140 sylan2 φyDnEyn=nnFnyn1
142 141 mpteq2dva φyDnEyn=yDnnFnyn1
143 113 142 eqtr4d φDP=yDnEyn
144 nfcv _b
145 nfmpt1 _bbkkFkbk1
146 8 145 nfcxfr _bE
147 146 33 nffv _bEy
148 nfcv _bn
149 147 148 nffv _bEyn
150 144 149 nfsum _bnEyn
151 nfcv _ykEbk
152 simpl y=bny=b
153 152 fveq2d y=bnEy=Eb
154 153 fveq1d y=bnEyn=Ebn
155 154 sumeq2dv y=bnEyn=nEbn
156 nfmpt1 _kkkFkbk1
157 43 156 nfmpt _kbkkFkbk1
158 8 157 nfcxfr _kE
159 nfcv _kb
160 158 159 nffv _kEb
161 nfcv _kn
162 160 161 nffv _kEbn
163 nfcv _nEbk
164 fveq2 n=kEbn=Ebk
165 162 163 164 cbvsumi nEbn=kEbk
166 155 165 eqtrdi y=bnEyn=kEbk
167 30 29 150 151 166 cbvmptf yDnEyn=bDkEbk
168 143 167 eqtrdi φDP=bDkEbk