Metamath Proof Explorer


Theorem bpolydiflem

Description: Lemma for bpolydif . (Contributed by Scott Fenton, 12-Jun-2014)

Ref Expression
Hypotheses bpolydiflem.1 φN
bpolydiflem.2 φX
bpolydiflem.3 φk1N1kBernPolyX+1kBernPolyX=kXk1
Assertion bpolydiflem φNBernPolyX+1NBernPolyX=NXN1

Proof

Step Hyp Ref Expression
1 bpolydiflem.1 φN
2 bpolydiflem.2 φX
3 bpolydiflem.3 φk1N1kBernPolyX+1kBernPolyX=kXk1
4 1 nnnn0d φN0
5 peano2cn XX+1
6 2 5 syl φX+1
7 bpolyval N0X+1NBernPolyX+1=X+1Nk=0N1(Nk)kBernPolyX+1N-k+1
8 4 6 7 syl2anc φNBernPolyX+1=X+1Nk=0N1(Nk)kBernPolyX+1N-k+1
9 bpolyval N0XNBernPolyX=XNk=0N1(Nk)kBernPolyXN-k+1
10 4 2 9 syl2anc φNBernPolyX=XNk=0N1(Nk)kBernPolyXN-k+1
11 8 10 oveq12d φNBernPolyX+1NBernPolyX=X+1N-k=0N1(Nk)kBernPolyX+1N-k+1-XNk=0N1(Nk)kBernPolyXN-k+1
12 6 4 expcld φX+1N
13 fzfid φ0N1Fin
14 elfzelz k0N1k
15 bccl N0k(Nk)0
16 4 14 15 syl2an φk0N1(Nk)0
17 16 nn0cnd φk0N1(Nk)
18 elfznn0 k0N1k0
19 bpolycl k0X+1kBernPolyX+1
20 18 6 19 syl2anr φk0N1kBernPolyX+1
21 fzssp1 0N10N-1+1
22 1 nncnd φN
23 ax-1cn 1
24 npcan N1N-1+1=N
25 22 23 24 sylancl φN-1+1=N
26 25 oveq2d φ0N-1+1=0N
27 21 26 sseqtrid φ0N10N
28 27 sselda φk0N1k0N
29 fznn0sub k0NNk0
30 28 29 syl φk0N1Nk0
31 nn0p1nn Nk0N-k+1
32 30 31 syl φk0N1N-k+1
33 32 nncnd φk0N1N-k+1
34 32 nnne0d φk0N1N-k+10
35 20 33 34 divcld φk0N1kBernPolyX+1N-k+1
36 17 35 mulcld φk0N1(Nk)kBernPolyX+1N-k+1
37 13 36 fsumcl φk=0N1(Nk)kBernPolyX+1N-k+1
38 2 4 expcld φXN
39 bpolycl k0XkBernPolyX
40 18 2 39 syl2anr φk0N1kBernPolyX
41 40 33 34 divcld φk0N1kBernPolyXN-k+1
42 17 41 mulcld φk0N1(Nk)kBernPolyXN-k+1
43 13 42 fsumcl φk=0N1(Nk)kBernPolyXN-k+1
44 12 37 38 43 sub4d φX+1N-k=0N1(Nk)kBernPolyX+1N-k+1-XNk=0N1(Nk)kBernPolyXN-k+1=X+1N-XN-k=0N1(Nk)kBernPolyX+1N-k+1k=0N1(Nk)kBernPolyXN-k+1
45 27 sselda φm0N1m0N
46 bccl2 m0N(Nm)
47 46 adantl φm0N(Nm)
48 47 nncnd φm0N(Nm)
49 elfznn0 m0Nm0
50 expcl Xm0Xm
51 2 49 50 syl2an φm0NXm
52 48 51 mulcld φm0N(Nm)Xm
53 45 52 syldan φm0N1(Nm)Xm
54 13 53 fsumcl φm=0N1(Nm)Xm
55 addcom X1X+1=1+X
56 2 23 55 sylancl φX+1=1+X
57 56 oveq1d φX+1N=1+XN
58 binom1p XN01+XN=m=0N(Nm)Xm
59 2 4 58 syl2anc φ1+XN=m=0N(Nm)Xm
60 57 59 eqtrd φX+1N=m=0N(Nm)Xm
61 nn0uz 0=0
62 4 61 eleqtrdi φN0
63 oveq2 m=N(Nm)=(NN)
64 oveq2 m=NXm=XN
65 63 64 oveq12d m=N(Nm)Xm=(NN)XN
66 62 52 65 fsumm1 φm=0N(Nm)Xm=m=0N1(Nm)Xm+(NN)XN
67 bcnn N0(NN)=1
68 4 67 syl φ(NN)=1
69 68 oveq1d φ(NN)XN=1XN
70 38 mullidd φ1XN=XN
71 69 70 eqtrd φ(NN)XN=XN
72 71 oveq2d φm=0N1(Nm)Xm+(NN)XN=m=0N1(Nm)Xm+XN
73 60 66 72 3eqtrd φX+1N=m=0N1(Nm)Xm+XN
74 54 38 73 mvrraddd φX+1NXN=m=0N1(Nm)Xm
75 nnm1nn0 NN10
76 1 75 syl φN10
77 76 61 eleqtrdi φN10
78 oveq2 m=N1(Nm)=(NN1)
79 oveq2 m=N1Xm=XN1
80 78 79 oveq12d m=N1(Nm)Xm=(NN1)XN1
81 77 53 80 fsumm1 φm=0N1(Nm)Xm=m=0N-1-1(Nm)Xm+(NN1)XN1
82 1cnd φ1
83 22 82 82 subsub4d φN-1-1=N1+1
84 df-2 2=1+1
85 84 oveq2i N2=N1+1
86 83 85 eqtr4di φN-1-1=N2
87 86 oveq2d φ0N-1-1=0N2
88 87 sumeq1d φm=0N-1-1(Nm)Xm=m=0N2(Nm)Xm
89 bcnm1 N0(NN1)=N
90 4 89 syl φ(NN1)=N
91 90 oveq1d φ(NN1)XN1=NXN1
92 88 91 oveq12d φm=0N-1-1(Nm)Xm+(NN1)XN1=m=0N2(Nm)Xm+NXN1
93 74 81 92 3eqtrd φX+1NXN=m=0N2(Nm)Xm+NXN1
94 oveq2 k=0(Nk)=(N0)
95 oveq1 k=0kBernPolyX+1=0BernPolyX+1
96 oveq2 k=0Nk=N0
97 96 oveq1d k=0N-k+1=N-0+1
98 95 97 oveq12d k=0kBernPolyX+1N-k+1=0BernPolyX+1N-0+1
99 94 98 oveq12d k=0(Nk)kBernPolyX+1N-k+1=(N0)0BernPolyX+1N-0+1
100 77 36 99 fsum1p φk=0N1(Nk)kBernPolyX+1N-k+1=(N0)0BernPolyX+1N-0+1+k=0+1N1(Nk)kBernPolyX+1N-k+1
101 bpoly0 X+10BernPolyX+1=1
102 6 101 syl φ0BernPolyX+1=1
103 102 oveq1d φ0BernPolyX+1N-0+1=1N-0+1
104 103 oveq2d φ(N0)0BernPolyX+1N-0+1=(N0)1N-0+1
105 104 oveq1d φ(N0)0BernPolyX+1N-0+1+k=0+1N1(Nk)kBernPolyX+1N-k+1=(N0)1N-0+1+k=0+1N1(Nk)kBernPolyX+1N-k+1
106 100 105 eqtrd φk=0N1(Nk)kBernPolyX+1N-k+1=(N0)1N-0+1+k=0+1N1(Nk)kBernPolyX+1N-k+1
107 oveq1 k=0kBernPolyX=0BernPolyX
108 107 97 oveq12d k=0kBernPolyXN-k+1=0BernPolyXN-0+1
109 94 108 oveq12d k=0(Nk)kBernPolyXN-k+1=(N0)0BernPolyXN-0+1
110 77 42 109 fsum1p φk=0N1(Nk)kBernPolyXN-k+1=(N0)0BernPolyXN-0+1+k=0+1N1(Nk)kBernPolyXN-k+1
111 bpoly0 X0BernPolyX=1
112 2 111 syl φ0BernPolyX=1
113 112 oveq1d φ0BernPolyXN-0+1=1N-0+1
114 113 oveq2d φ(N0)0BernPolyXN-0+1=(N0)1N-0+1
115 114 oveq1d φ(N0)0BernPolyXN-0+1+k=0+1N1(Nk)kBernPolyXN-k+1=(N0)1N-0+1+k=0+1N1(Nk)kBernPolyXN-k+1
116 110 115 eqtrd φk=0N1(Nk)kBernPolyXN-k+1=(N0)1N-0+1+k=0+1N1(Nk)kBernPolyXN-k+1
117 106 116 oveq12d φk=0N1(Nk)kBernPolyX+1N-k+1k=0N1(Nk)kBernPolyXN-k+1=(N0)1N-0+1+k=0+1N1(Nk)kBernPolyX+1N-k+1-(N0)1N-0+1+k=0+1N1(Nk)kBernPolyXN-k+1
118 0z 0
119 bccl N00(N0)0
120 4 118 119 sylancl φ(N0)0
121 120 nn0cnd φ(N0)
122 22 subid1d φN0=N
123 122 1 eqeltrd φN0
124 123 peano2nnd φN-0+1
125 124 nnrecred φ1N-0+1
126 125 recnd φ1N-0+1
127 121 126 mulcld φ(N0)1N-0+1
128 fzfid φ0+1N1Fin
129 fzp1ss 00+1N10N1
130 118 129 ax-mp 0+1N10N1
131 130 sseli k0+1N1k0N1
132 131 36 sylan2 φk0+1N1(Nk)kBernPolyX+1N-k+1
133 128 132 fsumcl φk=0+1N1(Nk)kBernPolyX+1N-k+1
134 131 42 sylan2 φk0+1N1(Nk)kBernPolyXN-k+1
135 128 134 fsumcl φk=0+1N1(Nk)kBernPolyXN-k+1
136 127 133 135 pnpcand φ(N0)1N-0+1+k=0+1N1(Nk)kBernPolyX+1N-k+1-(N0)1N-0+1+k=0+1N1(Nk)kBernPolyXN-k+1=k=0+1N1(Nk)kBernPolyX+1N-k+1k=0+1N1(Nk)kBernPolyXN-k+1
137 1zzd φ1
138 0zd φ0
139 1 nnzd φN
140 2z 2
141 zsubcl N2N2
142 139 140 141 sylancl φN2
143 fzssp1 0N20N-2+1
144 2cnd φ2
145 22 144 82 subsubd φN21=N-2+1
146 2m1e1 21=1
147 146 oveq2i N21=N1
148 145 147 eqtr3di φN-2+1=N1
149 148 oveq2d φ0N-2+1=0N1
150 143 149 sseqtrid φ0N20N1
151 150 sselda φm0N2m0N1
152 151 53 syldan φm0N2(Nm)Xm
153 oveq2 m=k1(Nm)=(Nk1)
154 oveq2 m=k1Xm=Xk1
155 153 154 oveq12d m=k1(Nm)Xm=(Nk1)Xk1
156 137 138 142 152 155 fsumshft φm=0N2(Nm)Xm=k=0+1N-2+1(Nk1)Xk1
157 148 oveq2d φ0+1N-2+1=0+1N1
158 157 sumeq1d φk=0+1N-2+1(Nk1)Xk1=k=0+1N1(Nk1)Xk1
159 156 158 eqtrd φm=0N2(Nm)Xm=k=0+1N1(Nk1)Xk1
160 0p1e1 0+1=1
161 160 oveq1i 0+1N1=1N1
162 161 eleq2i k0+1N1k1N1
163 fzssp1 1N11N-1+1
164 25 oveq2d φ1N-1+1=1N
165 163 164 sseqtrid φ1N11N
166 165 sselda φk1N1k1N
167 bcm1k k1N(Nk)=(Nk1)Nk1k
168 166 167 syl φk1N1(Nk)=(Nk1)Nk1k
169 1 adantr φk1N1N
170 169 nncnd φk1N1N
171 elfznn k1N1k
172 171 adantl φk1N1k
173 172 nncnd φk1N1k
174 1cnd φk1N11
175 170 173 174 subsubd φk1N1Nk1=N-k+1
176 175 oveq1d φk1N1Nk1k=N-k+1k
177 176 oveq2d φk1N1(Nk1)Nk1k=(Nk1)N-k+1k
178 168 177 eqtrd φk1N1(Nk)=(Nk1)N-k+1k
179 3 oveq1d φk1N1kBernPolyX+1kBernPolyXN-k+1=kXk1N-k+1
180 162 131 sylbir k1N1k0N1
181 180 20 sylan2 φk1N1kBernPolyX+1
182 180 40 sylan2 φk1N1kBernPolyX
183 180 33 sylan2 φk1N1N-k+1
184 180 34 sylan2 φk1N1N-k+10
185 181 182 183 184 divsubdird φk1N1kBernPolyX+1kBernPolyXN-k+1=kBernPolyX+1N-k+1kBernPolyXN-k+1
186 2 adantr φk1N1X
187 nnm1nn0 kk10
188 172 187 syl φk1N1k10
189 186 188 expcld φk1N1Xk1
190 173 189 183 184 div23d φk1N1kXk1N-k+1=kN-k+1Xk1
191 179 185 190 3eqtr3d φk1N1kBernPolyX+1N-k+1kBernPolyXN-k+1=kN-k+1Xk1
192 178 191 oveq12d φk1N1(Nk)kBernPolyX+1N-k+1kBernPolyXN-k+1=(Nk1)N-k+1kkN-k+1Xk1
193 180 17 sylan2 φk1N1(Nk)
194 181 183 184 divcld φk1N1kBernPolyX+1N-k+1
195 182 183 184 divcld φk1N1kBernPolyXN-k+1
196 193 194 195 subdid φk1N1(Nk)kBernPolyX+1N-k+1kBernPolyXN-k+1=(Nk)kBernPolyX+1N-k+1(Nk)kBernPolyXN-k+1
197 169 nnnn0d φk1N1N0
198 188 nn0zd φk1N1k1
199 bccl N0k1(Nk1)0
200 197 198 199 syl2anc φk1N1(Nk1)0
201 200 nn0cnd φk1N1(Nk1)
202 172 nnne0d φk1N1k0
203 183 173 202 divcld φk1N1N-k+1k
204 173 183 184 divcld φk1N1kN-k+1
205 204 189 mulcld φk1N1kN-k+1Xk1
206 201 203 205 mulassd φk1N1(Nk1)N-k+1kkN-k+1Xk1=(Nk1)N-k+1kkN-k+1Xk1
207 183 173 184 202 divcan6d φk1N1N-k+1kkN-k+1=1
208 207 oveq1d φk1N1N-k+1kkN-k+1Xk1=1Xk1
209 203 204 189 mulassd φk1N1N-k+1kkN-k+1Xk1=N-k+1kkN-k+1Xk1
210 189 mullidd φk1N11Xk1=Xk1
211 208 209 210 3eqtr3d φk1N1N-k+1kkN-k+1Xk1=Xk1
212 211 oveq2d φk1N1(Nk1)N-k+1kkN-k+1Xk1=(Nk1)Xk1
213 206 212 eqtrd φk1N1(Nk1)N-k+1kkN-k+1Xk1=(Nk1)Xk1
214 192 196 213 3eqtr3d φk1N1(Nk)kBernPolyX+1N-k+1(Nk)kBernPolyXN-k+1=(Nk1)Xk1
215 162 214 sylan2b φk0+1N1(Nk)kBernPolyX+1N-k+1(Nk)kBernPolyXN-k+1=(Nk1)Xk1
216 215 sumeq2dv φk=0+1N1(Nk)kBernPolyX+1N-k+1(Nk)kBernPolyXN-k+1=k=0+1N1(Nk1)Xk1
217 128 132 134 fsumsub φk=0+1N1(Nk)kBernPolyX+1N-k+1(Nk)kBernPolyXN-k+1=k=0+1N1(Nk)kBernPolyX+1N-k+1k=0+1N1(Nk)kBernPolyXN-k+1
218 159 216 217 3eqtr2rd φk=0+1N1(Nk)kBernPolyX+1N-k+1k=0+1N1(Nk)kBernPolyXN-k+1=m=0N2(Nm)Xm
219 117 136 218 3eqtrd φk=0N1(Nk)kBernPolyX+1N-k+1k=0N1(Nk)kBernPolyXN-k+1=m=0N2(Nm)Xm
220 93 219 oveq12d φX+1N-XN-k=0N1(Nk)kBernPolyX+1N-k+1k=0N1(Nk)kBernPolyXN-k+1=m=0N2(Nm)Xm+NXN1-m=0N2(Nm)Xm
221 fzfid φ0N2Fin
222 221 152 fsumcl φm=0N2(Nm)Xm
223 2 76 expcld φXN1
224 22 223 mulcld φNXN1
225 222 224 pncan2d φm=0N2(Nm)Xm+NXN1-m=0N2(Nm)Xm=NXN1
226 220 225 eqtrd φX+1N-XN-k=0N1(Nk)kBernPolyX+1N-k+1k=0N1(Nk)kBernPolyXN-k+1=NXN1
227 11 44 226 3eqtrd φNBernPolyX+1NBernPolyX=NXN1