Metamath Proof Explorer


Theorem chtppilimlem1

Description: Lemma for chtppilim . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypotheses chtppilim.1 φ A +
chtppilim.2 φ A < 1
chtppilim.3 φ N 2 +∞
chtppilim.4 φ N A π _ N < 1 A
Assertion chtppilimlem1 φ A 2 π _ N log N < θ N

Proof

Step Hyp Ref Expression
1 chtppilim.1 φ A +
2 chtppilim.2 φ A < 1
3 chtppilim.3 φ N 2 +∞
4 chtppilim.4 φ N A π _ N < 1 A
5 1 rpred φ A
6 5 recnd φ A
7 6 sqvald φ A 2 = A A
8 7 oveq1d φ A 2 π _ N log N = A A π _ N log N
9 2re 2
10 elicopnf 2 N 2 +∞ N 2 N
11 9 10 ax-mp N 2 +∞ N 2 N
12 3 11 sylib φ N 2 N
13 12 simpld φ N
14 ppicl N π _ N 0
15 13 14 syl φ π _ N 0
16 15 nn0red φ π _ N
17 16 recnd φ π _ N
18 0red φ 0
19 9 a1i φ 2
20 2pos 0 < 2
21 20 a1i φ 0 < 2
22 12 simprd φ 2 N
23 18 19 13 21 22 ltletrd φ 0 < N
24 13 23 elrpd φ N +
25 24 relogcld φ log N
26 25 recnd φ log N
27 6 6 17 26 mul4d φ A A π _ N log N = A π _ N A log N
28 8 27 eqtrd φ A 2 π _ N log N = A π _ N A log N
29 5 16 remulcld φ A π _ N
30 5 25 remulcld φ A log N
31 29 30 remulcld φ A π _ N A log N
32 24 5 rpcxpcld φ N A +
33 32 rpred φ N A
34 ppicl N A π _ N A 0
35 33 34 syl φ π _ N A 0
36 35 nn0red φ π _ N A
37 16 36 resubcld φ π _ N π _ N A
38 37 30 remulcld φ π _ N π _ N A A log N
39 chtcl N θ N
40 13 39 syl φ θ N
41 1red φ 1
42 1lt2 1 < 2
43 42 a1i φ 1 < 2
44 41 19 13 43 22 ltletrd φ 1 < N
45 13 44 rplogcld φ log N +
46 1 45 rpmulcld φ A log N +
47 16 33 resubcld φ π _ N N A
48 ppinncl N 2 N π _ N
49 12 48 syl φ π _ N
50 33 49 nndivred φ N A π _ N
51 50 41 5 4 ltsub13d φ A < 1 N A π _ N
52 33 recnd φ N A
53 49 nnrpd φ π _ N +
54 53 rpcnne0d φ π _ N π _ N 0
55 divsubdir π _ N N A π _ N π _ N 0 π _ N N A π _ N = π _ N π _ N N A π _ N
56 17 52 54 55 syl3anc φ π _ N N A π _ N = π _ N π _ N N A π _ N
57 divid π _ N π _ N 0 π _ N π _ N = 1
58 54 57 syl φ π _ N π _ N = 1
59 58 oveq1d φ π _ N π _ N N A π _ N = 1 N A π _ N
60 56 59 eqtrd φ π _ N N A π _ N = 1 N A π _ N
61 51 60 breqtrrd φ A < π _ N N A π _ N
62 5 47 53 ltmuldivd φ A π _ N < π _ N N A A < π _ N N A π _ N
63 61 62 mpbird φ A π _ N < π _ N N A
64 ppiltx N A + π _ N A < N A
65 32 64 syl φ π _ N A < N A
66 36 33 16 65 ltsub2dd φ π _ N N A < π _ N π _ N A
67 29 47 37 63 66 lttrd φ A π _ N < π _ N π _ N A
68 29 37 46 67 ltmul1dd φ A π _ N A log N < π _ N π _ N A A log N
69 fzfid φ N A + 1 N Fin
70 inss1 N A + 1 N N A + 1 N
71 ssfi N A + 1 N Fin N A + 1 N N A + 1 N N A + 1 N Fin
72 69 70 71 sylancl φ N A + 1 N Fin
73 simpr φ p N A + 1 N p N A + 1 N
74 73 elin2d φ p N A + 1 N p
75 prmnn p p
76 75 nnrpd p p +
77 74 76 syl φ p N A + 1 N p +
78 77 relogcld φ p N A + 1 N log p
79 72 78 fsumrecl φ p N A + 1 N log p
80 30 recnd φ A log N
81 fsumconst N A + 1 N Fin A log N p N A + 1 N A log N = N A + 1 N A log N
82 72 80 81 syl2anc φ p N A + 1 N A log N = N A + 1 N A log N
83 ppifl N π _ N = π _ N
84 13 83 syl φ π _ N = π _ N
85 ppifl N A π _ N A = π _ N A
86 33 85 syl φ π _ N A = π _ N A
87 84 86 oveq12d φ π _ N π _ N A = π _ N π _ N A
88 41 13 44 ltled φ 1 N
89 1re 1
90 ltle A 1 A < 1 A 1
91 5 89 90 sylancl φ A < 1 A 1
92 2 91 mpd φ A 1
93 13 88 5 41 92 cxplead φ N A N 1
94 13 recnd φ N
95 94 cxp1d φ N 1 = N
96 93 95 breqtrd φ N A N
97 flword2 N A N N A N N N A
98 33 13 96 97 syl3anc φ N N A
99 ppidif N N A π _ N π _ N A = N A + 1 N
100 98 99 syl φ π _ N π _ N A = N A + 1 N
101 87 100 eqtr3d φ π _ N π _ N A = N A + 1 N
102 101 oveq1d φ π _ N π _ N A A log N = N A + 1 N A log N
103 82 102 eqtr4d φ p N A + 1 N A log N = π _ N π _ N A A log N
104 30 adantr φ p N A + 1 N A log N
105 33 adantr φ p N A + 1 N N A
106 reflcl N A N A
107 peano2re N A N A + 1
108 33 106 107 3syl φ N A + 1
109 108 adantr φ p N A + 1 N N A + 1
110 77 rpred φ p N A + 1 N p
111 fllep1 N A N A N A + 1
112 33 111 syl φ N A N A + 1
113 112 adantr φ p N A + 1 N N A N A + 1
114 73 elin1d φ p N A + 1 N p N A + 1 N
115 elfzle1 p N A + 1 N N A + 1 p
116 114 115 syl φ p N A + 1 N N A + 1 p
117 105 109 110 113 116 letrd φ p N A + 1 N N A p
118 24 rpne0d φ N 0
119 94 118 6 cxpefd φ N A = e A log N
120 119 eqcomd φ e A log N = N A
121 120 adantr φ p N A + 1 N e A log N = N A
122 77 reeflogd φ p N A + 1 N e log p = p
123 117 121 122 3brtr4d φ p N A + 1 N e A log N e log p
124 efle A log N log p A log N log p e A log N e log p
125 104 78 124 syl2anc φ p N A + 1 N A log N log p e A log N e log p
126 123 125 mpbird φ p N A + 1 N A log N log p
127 72 104 78 126 fsumle φ p N A + 1 N A log N p N A + 1 N log p
128 103 127 eqbrtrrd φ π _ N π _ N A A log N p N A + 1 N log p
129 fzfid φ 1 N Fin
130 inss1 1 N 1 N
131 ssfi 1 N Fin 1 N 1 N 1 N Fin
132 129 130 131 sylancl φ 1 N Fin
133 simpr φ p 1 N p 1 N
134 133 elin2d φ p 1 N p
135 prmuz2 p p 2
136 134 135 syl φ p 1 N p 2
137 eluz2b2 p 2 p 1 < p
138 136 137 sylib φ p 1 N p 1 < p
139 138 simpld φ p 1 N p
140 139 nnred φ p 1 N p
141 138 simprd φ p 1 N 1 < p
142 140 141 rplogcld φ p 1 N log p +
143 142 rpred φ p 1 N log p
144 142 rpge0d φ p 1 N 0 log p
145 32 rpge0d φ 0 N A
146 flge0nn0 N A 0 N A N A 0
147 33 145 146 syl2anc φ N A 0
148 nn0p1nn N A 0 N A + 1
149 147 148 syl φ N A + 1
150 nnuz = 1
151 149 150 eleqtrdi φ N A + 1 1
152 fzss1 N A + 1 1 N A + 1 N 1 N
153 ssrin N A + 1 N 1 N N A + 1 N 1 N
154 151 152 153 3syl φ N A + 1 N 1 N
155 132 143 144 154 fsumless φ p N A + 1 N log p p 1 N log p
156 chtval N θ N = p 0 N log p
157 13 156 syl φ θ N = p 0 N log p
158 2eluzge1 2 1
159 ppisval2 N 2 1 0 N = 1 N
160 13 158 159 sylancl φ 0 N = 1 N
161 160 sumeq1d φ p 0 N log p = p 1 N log p
162 157 161 eqtrd φ θ N = p 1 N log p
163 155 162 breqtrrd φ p N A + 1 N log p θ N
164 38 79 40 128 163 letrd φ π _ N π _ N A A log N θ N
165 31 38 40 68 164 ltletrd φ A π _ N A log N < θ N
166 28 165 eqbrtrd φ A 2 π _ N log N < θ N