Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|
2 |
|
elin |
|
3 |
1 2
|
sylib |
|
4 |
3
|
simpld |
|
5 |
|
elpwi |
|
6 |
4 5
|
syl |
|
7 |
|
elpwi |
|
8 |
7
|
ad4antlr |
|
9 |
6 8
|
sstrd |
|
10 |
|
velpw |
|
11 |
9 10
|
sylibr |
|
12 |
3
|
simprd |
|
13 |
11 12
|
elind |
|
14 |
|
simpr |
|
15 |
|
simpllr |
|
16 |
14 15
|
eqtr3d |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
17 18
|
ssref |
|
20 |
11 6 16 19
|
syl3anc |
|
21 |
|
breq1 |
|
22 |
21
|
rspcev |
|
23 |
13 20 22
|
syl2anc |
|
24 |
23
|
r19.29an |
|
25 |
|
simplr |
|
26 |
|
vex |
|
27 |
|
eqid |
|
28 |
27 18
|
isref |
|
29 |
26 28
|
ax-mp |
|
30 |
29
|
simprbi |
|
31 |
30
|
adantl |
|
32 |
|
sseq2 |
|
33 |
32
|
ac6sg |
|
34 |
25 31 33
|
sylc |
|
35 |
|
simplr |
|
36 |
35
|
frnd |
|
37 |
|
vex |
|
38 |
37
|
rnex |
|
39 |
38
|
elpw |
|
40 |
36 39
|
sylibr |
|
41 |
35
|
ffnd |
|
42 |
|
elin |
|
43 |
42
|
simprbi |
|
44 |
43
|
ad4antlr |
|
45 |
|
fnfi |
|
46 |
41 44 45
|
syl2anc |
|
47 |
|
rnfi |
|
48 |
46 47
|
syl |
|
49 |
40 48
|
elind |
|
50 |
|
simp-5r |
|
51 |
27 18
|
refbas |
|
52 |
51
|
ad3antlr |
|
53 |
|
nfv |
|
54 |
|
nfra1 |
|
55 |
53 54
|
nfan |
|
56 |
|
rspa |
|
57 |
56
|
adantll |
|
58 |
57
|
sseld |
|
59 |
58
|
ex |
|
60 |
55 59
|
reximdai |
|
61 |
|
eluni2 |
|
62 |
61
|
a1i |
|
63 |
|
fnunirn |
|
64 |
41 63
|
syl |
|
65 |
60 62 64
|
3imtr4d |
|
66 |
65
|
ssrdv |
|
67 |
52 66
|
eqsstrd |
|
68 |
36
|
unissd |
|
69 |
67 68
|
eqssd |
|
70 |
50 69
|
eqtrd |
|
71 |
|
unieq |
|
72 |
71
|
rspceeqv |
|
73 |
49 70 72
|
syl2anc |
|
74 |
73
|
expl |
|
75 |
74
|
exlimdv |
|
76 |
34 75
|
mpd |
|
77 |
76
|
r19.29an |
|
78 |
24 77
|
impbida |
|
79 |
78
|
pm5.74da |
|
80 |
79
|
ralbidva |
|
81 |
80
|
pm5.32i |
|
82 |
|
eqid |
|
83 |
82
|
iscmp |
|
84 |
82
|
iscref |
|
85 |
81 83 84
|
3bitr4i |
|
86 |
85
|
eqriv |
|