Metamath Proof Explorer


Theorem cntzsdrg

Description: Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses cntzsdrg.b B = Base R
cntzsdrg.m M = mulGrp R
cntzsdrg.z Z = Cntz M
Assertion cntzsdrg R DivRing S B Z S SubDRing R

Proof

Step Hyp Ref Expression
1 cntzsdrg.b B = Base R
2 cntzsdrg.m M = mulGrp R
3 cntzsdrg.z Z = Cntz M
4 simpl R DivRing S B R DivRing
5 drngring R DivRing R Ring
6 1 2 3 cntzsubr R Ring S B Z S SubRing R
7 5 6 sylan R DivRing S B Z S SubRing R
8 oveq2 y = 0 R inv r R x R y = inv r R x R 0 R
9 oveq1 y = 0 R y R inv r R x = 0 R R inv r R x
10 8 9 eqeq12d y = 0 R inv r R x R y = y R inv r R x inv r R x R 0 R = 0 R R inv r R x
11 eldifsn y S 0 R y S y 0 R
12 eqid Unit R = Unit R
13 2 oveq1i M 𝑠 Unit R = mulGrp R 𝑠 Unit R
14 eqid inv r R = inv r R
15 12 13 14 invrfval inv r R = inv g M 𝑠 Unit R
16 eqid 0 R = 0 R
17 1 12 16 isdrng R DivRing R Ring Unit R = B 0 R
18 17 simprbi R DivRing Unit R = B 0 R
19 18 oveq2d R DivRing M 𝑠 Unit R = M 𝑠 B 0 R
20 19 fveq2d R DivRing inv g M 𝑠 Unit R = inv g M 𝑠 B 0 R
21 15 20 syl5eq R DivRing inv r R = inv g M 𝑠 B 0 R
22 21 ad2antrr R DivRing S B x Z S 0 R inv r R = inv g M 𝑠 B 0 R
23 22 fveq1d R DivRing S B x Z S 0 R inv r R x = inv g M 𝑠 B 0 R x
24 2 oveq1i M 𝑠 B 0 R = mulGrp R 𝑠 B 0 R
25 1 16 24 drngmgp R DivRing M 𝑠 B 0 R Grp
26 25 ad2antrr R DivRing S B x Z S 0 R M 𝑠 B 0 R Grp
27 ssdif S B S 0 R B 0 R
28 27 ad2antlr R DivRing S B x Z S 0 R S 0 R B 0 R
29 difss B 0 R B
30 eqid M 𝑠 B 0 R = M 𝑠 B 0 R
31 2 1 mgpbas B = Base M
32 30 31 ressbas2 B 0 R B B 0 R = Base M 𝑠 B 0 R
33 29 32 ax-mp B 0 R = Base M 𝑠 B 0 R
34 eqid Cntz M 𝑠 B 0 R = Cntz M 𝑠 B 0 R
35 33 34 cntzsubg M 𝑠 B 0 R Grp S 0 R B 0 R Cntz M 𝑠 B 0 R S 0 R SubGrp M 𝑠 B 0 R
36 26 28 35 syl2anc R DivRing S B x Z S 0 R Cntz M 𝑠 B 0 R S 0 R SubGrp M 𝑠 B 0 R
37 simpr R DivRing S B S B
38 difss S 0 R S
39 31 3 cntz2ss S B S 0 R S Z S Z S 0 R
40 37 38 39 sylancl R DivRing S B Z S Z S 0 R
41 40 ssdifssd R DivRing S B Z S 0 R Z S 0 R
42 41 sselda R DivRing S B x Z S 0 R x Z S 0 R
43 31 3 cntzssv Z S B
44 ssdif Z S B Z S 0 R B 0 R
45 43 44 mp1i R DivRing S B Z S 0 R B 0 R
46 45 sselda R DivRing S B x Z S 0 R x B 0 R
47 42 46 elind R DivRing S B x Z S 0 R x Z S 0 R B 0 R
48 1 fvexi B V
49 48 difexi B 0 R V
50 30 3 34 resscntz B 0 R V S 0 R B 0 R Cntz M 𝑠 B 0 R S 0 R = Z S 0 R B 0 R
51 49 28 50 sylancr R DivRing S B x Z S 0 R Cntz M 𝑠 B 0 R S 0 R = Z S 0 R B 0 R
52 47 51 eleqtrrd R DivRing S B x Z S 0 R x Cntz M 𝑠 B 0 R S 0 R
53 eqid inv g M 𝑠 B 0 R = inv g M 𝑠 B 0 R
54 53 subginvcl Cntz M 𝑠 B 0 R S 0 R SubGrp M 𝑠 B 0 R x Cntz M 𝑠 B 0 R S 0 R inv g M 𝑠 B 0 R x Cntz M 𝑠 B 0 R S 0 R
55 36 52 54 syl2anc R DivRing S B x Z S 0 R inv g M 𝑠 B 0 R x Cntz M 𝑠 B 0 R S 0 R
56 23 55 eqeltrd R DivRing S B x Z S 0 R inv r R x Cntz M 𝑠 B 0 R S 0 R
57 eqid R = R
58 2 57 mgpplusg R = + M
59 30 58 ressplusg B 0 R V R = + M 𝑠 B 0 R
60 49 59 ax-mp R = + M 𝑠 B 0 R
61 60 34 cntzi inv r R x Cntz M 𝑠 B 0 R S 0 R y S 0 R inv r R x R y = y R inv r R x
62 56 61 sylan R DivRing S B x Z S 0 R y S 0 R inv r R x R y = y R inv r R x
63 11 62 sylan2br R DivRing S B x Z S 0 R y S y 0 R inv r R x R y = y R inv r R x
64 63 anassrs R DivRing S B x Z S 0 R y S y 0 R inv r R x R y = y R inv r R x
65 5 ad3antrrr R DivRing S B x Z S 0 R y S R Ring
66 4 adantr R DivRing S B x Z S 0 R R DivRing
67 eldifi x Z S 0 R x Z S
68 67 adantl R DivRing S B x Z S 0 R x Z S
69 43 68 sseldi R DivRing S B x Z S 0 R x B
70 eldifsni x Z S 0 R x 0 R
71 70 adantl R DivRing S B x Z S 0 R x 0 R
72 1 16 14 drnginvrcl R DivRing x B x 0 R inv r R x B
73 66 69 71 72 syl3anc R DivRing S B x Z S 0 R inv r R x B
74 73 adantr R DivRing S B x Z S 0 R y S inv r R x B
75 1 57 16 ringrz R Ring inv r R x B inv r R x R 0 R = 0 R
76 65 74 75 syl2anc R DivRing S B x Z S 0 R y S inv r R x R 0 R = 0 R
77 1 57 16 ringlz R Ring inv r R x B 0 R R inv r R x = 0 R
78 65 74 77 syl2anc R DivRing S B x Z S 0 R y S 0 R R inv r R x = 0 R
79 76 78 eqtr4d R DivRing S B x Z S 0 R y S inv r R x R 0 R = 0 R R inv r R x
80 10 64 79 pm2.61ne R DivRing S B x Z S 0 R y S inv r R x R y = y R inv r R x
81 80 ralrimiva R DivRing S B x Z S 0 R y S inv r R x R y = y R inv r R x
82 simplr R DivRing S B x Z S 0 R S B
83 31 58 3 cntzel S B inv r R x B inv r R x Z S y S inv r R x R y = y R inv r R x
84 82 73 83 syl2anc R DivRing S B x Z S 0 R inv r R x Z S y S inv r R x R y = y R inv r R x
85 81 84 mpbird R DivRing S B x Z S 0 R inv r R x Z S
86 85 ralrimiva R DivRing S B x Z S 0 R inv r R x Z S
87 14 16 issdrg2 Z S SubDRing R R DivRing Z S SubRing R x Z S 0 R inv r R x Z S
88 4 7 86 87 syl3anbrc R DivRing S B Z S SubDRing R