Metamath Proof Explorer


Theorem cntzsdrg

Description: Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses cntzsdrg.b B=BaseR
cntzsdrg.m M=mulGrpR
cntzsdrg.z Z=CntzM
Assertion cntzsdrg RDivRingSBZSSubDRingR

Proof

Step Hyp Ref Expression
1 cntzsdrg.b B=BaseR
2 cntzsdrg.m M=mulGrpR
3 cntzsdrg.z Z=CntzM
4 simpl RDivRingSBRDivRing
5 drngring RDivRingRRing
6 1 2 3 cntzsubr RRingSBZSSubRingR
7 5 6 sylan RDivRingSBZSSubRingR
8 oveq2 y=0RinvrRxRy=invrRxR0R
9 oveq1 y=0RyRinvrRx=0RRinvrRx
10 8 9 eqeq12d y=0RinvrRxRy=yRinvrRxinvrRxR0R=0RRinvrRx
11 eldifsn yS0RySy0R
12 eqid UnitR=UnitR
13 2 oveq1i M𝑠UnitR=mulGrpR𝑠UnitR
14 eqid invrR=invrR
15 12 13 14 invrfval invrR=invgM𝑠UnitR
16 eqid 0R=0R
17 1 12 16 isdrng RDivRingRRingUnitR=B0R
18 17 simprbi RDivRingUnitR=B0R
19 18 oveq2d RDivRingM𝑠UnitR=M𝑠B0R
20 19 fveq2d RDivRinginvgM𝑠UnitR=invgM𝑠B0R
21 15 20 eqtrid RDivRinginvrR=invgM𝑠B0R
22 21 ad2antrr RDivRingSBxZS0RinvrR=invgM𝑠B0R
23 22 fveq1d RDivRingSBxZS0RinvrRx=invgM𝑠B0Rx
24 2 oveq1i M𝑠B0R=mulGrpR𝑠B0R
25 1 16 24 drngmgp RDivRingM𝑠B0RGrp
26 25 ad2antrr RDivRingSBxZS0RM𝑠B0RGrp
27 ssdif SBS0RB0R
28 27 ad2antlr RDivRingSBxZS0RS0RB0R
29 difss B0RB
30 eqid M𝑠B0R=M𝑠B0R
31 2 1 mgpbas B=BaseM
32 30 31 ressbas2 B0RBB0R=BaseM𝑠B0R
33 29 32 ax-mp B0R=BaseM𝑠B0R
34 eqid CntzM𝑠B0R=CntzM𝑠B0R
35 33 34 cntzsubg M𝑠B0RGrpS0RB0RCntzM𝑠B0RS0RSubGrpM𝑠B0R
36 26 28 35 syl2anc RDivRingSBxZS0RCntzM𝑠B0RS0RSubGrpM𝑠B0R
37 simpr RDivRingSBSB
38 difss S0RS
39 31 3 cntz2ss SBS0RSZSZS0R
40 37 38 39 sylancl RDivRingSBZSZS0R
41 40 ssdifssd RDivRingSBZS0RZS0R
42 41 sselda RDivRingSBxZS0RxZS0R
43 31 3 cntzssv ZSB
44 ssdif ZSBZS0RB0R
45 43 44 mp1i RDivRingSBZS0RB0R
46 45 sselda RDivRingSBxZS0RxB0R
47 42 46 elind RDivRingSBxZS0RxZS0RB0R
48 1 fvexi BV
49 48 difexi B0RV
50 30 3 34 resscntz B0RVS0RB0RCntzM𝑠B0RS0R=ZS0RB0R
51 49 28 50 sylancr RDivRingSBxZS0RCntzM𝑠B0RS0R=ZS0RB0R
52 47 51 eleqtrrd RDivRingSBxZS0RxCntzM𝑠B0RS0R
53 eqid invgM𝑠B0R=invgM𝑠B0R
54 53 subginvcl CntzM𝑠B0RS0RSubGrpM𝑠B0RxCntzM𝑠B0RS0RinvgM𝑠B0RxCntzM𝑠B0RS0R
55 36 52 54 syl2anc RDivRingSBxZS0RinvgM𝑠B0RxCntzM𝑠B0RS0R
56 23 55 eqeltrd RDivRingSBxZS0RinvrRxCntzM𝑠B0RS0R
57 eqid R=R
58 2 57 mgpplusg R=+M
59 30 58 ressplusg B0RVR=+M𝑠B0R
60 49 59 ax-mp R=+M𝑠B0R
61 60 34 cntzi invrRxCntzM𝑠B0RS0RyS0RinvrRxRy=yRinvrRx
62 56 61 sylan RDivRingSBxZS0RyS0RinvrRxRy=yRinvrRx
63 11 62 sylan2br RDivRingSBxZS0RySy0RinvrRxRy=yRinvrRx
64 63 anassrs RDivRingSBxZS0RySy0RinvrRxRy=yRinvrRx
65 5 ad3antrrr RDivRingSBxZS0RySRRing
66 4 adantr RDivRingSBxZS0RRDivRing
67 eldifi xZS0RxZS
68 67 adantl RDivRingSBxZS0RxZS
69 43 68 sselid RDivRingSBxZS0RxB
70 eldifsni xZS0Rx0R
71 70 adantl RDivRingSBxZS0Rx0R
72 1 16 14 drnginvrcl RDivRingxBx0RinvrRxB
73 66 69 71 72 syl3anc RDivRingSBxZS0RinvrRxB
74 73 adantr RDivRingSBxZS0RySinvrRxB
75 1 57 16 ringrz RRinginvrRxBinvrRxR0R=0R
76 65 74 75 syl2anc RDivRingSBxZS0RySinvrRxR0R=0R
77 1 57 16 ringlz RRinginvrRxB0RRinvrRx=0R
78 65 74 77 syl2anc RDivRingSBxZS0RyS0RRinvrRx=0R
79 76 78 eqtr4d RDivRingSBxZS0RySinvrRxR0R=0RRinvrRx
80 10 64 79 pm2.61ne RDivRingSBxZS0RySinvrRxRy=yRinvrRx
81 80 ralrimiva RDivRingSBxZS0RySinvrRxRy=yRinvrRx
82 simplr RDivRingSBxZS0RSB
83 31 58 3 cntzel SBinvrRxBinvrRxZSySinvrRxRy=yRinvrRx
84 82 73 83 syl2anc RDivRingSBxZS0RinvrRxZSySinvrRxRy=yRinvrRx
85 81 84 mpbird RDivRingSBxZS0RinvrRxZS
86 85 ralrimiva RDivRingSBxZS0RinvrRxZS
87 14 16 issdrg2 ZSSubDRingRRDivRingZSSubRingRxZS0RinvrRxZS
88 4 7 86 87 syl3anbrc RDivRingSBZSSubDRingR