| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3re |  | 
						
							| 2 | 1 | a1i |  | 
						
							| 3 |  | 0red |  | 
						
							| 4 | 3 | recnd |  | 
						
							| 5 |  | ovexd |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 |  | recl |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | 1re |  | 
						
							| 10 |  | ifcl |  | 
						
							| 11 | 8 9 10 | sylancl |  | 
						
							| 12 | 9 | a1i |  | 
						
							| 13 |  | 0lt1 |  | 
						
							| 14 | 13 | a1i |  | 
						
							| 15 |  | max1 |  | 
						
							| 16 | 9 8 15 | sylancr |  | 
						
							| 17 | 3 12 11 14 16 | ltletrd |  | 
						
							| 18 | 11 17 | elrpd |  | 
						
							| 19 | 6 18 | rpdivcld |  | 
						
							| 20 |  | cxploglim |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 5 21 18 | rlimcxp |  | 
						
							| 23 | 5 21 | rlimmptrcl |  | 
						
							| 24 | 11 | adantr |  | 
						
							| 25 | 24 | recnd |  | 
						
							| 26 | 23 25 | cxpcld |  | 
						
							| 27 |  | relogcl |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 | 28 | recnd |  | 
						
							| 30 |  | simpll |  | 
						
							| 31 | 29 30 | cxpcld |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 |  | rpre |  | 
						
							| 34 | 33 | ad2antlr |  | 
						
							| 35 | 32 34 | rpcxpcld |  | 
						
							| 36 | 35 | rpcnd |  | 
						
							| 37 | 35 | rpne0d |  | 
						
							| 38 | 31 36 37 | divcld |  | 
						
							| 39 | 38 | adantrr |  | 
						
							| 40 | 39 | abscld |  | 
						
							| 41 |  | rpre |  | 
						
							| 42 | 41 | ad2antrl |  | 
						
							| 43 | 9 | a1i |  | 
						
							| 44 | 1 | a1i |  | 
						
							| 45 |  | 1lt3 |  | 
						
							| 46 | 45 | a1i |  | 
						
							| 47 |  | simprr |  | 
						
							| 48 | 43 44 42 46 47 | ltletrd |  | 
						
							| 49 | 42 48 | rplogcld |  | 
						
							| 50 | 32 | adantrr |  | 
						
							| 51 | 33 | ad2antlr |  | 
						
							| 52 | 18 | adantr |  | 
						
							| 53 | 51 52 | rerpdivcld |  | 
						
							| 54 | 50 53 | rpcxpcld |  | 
						
							| 55 | 49 54 | rpdivcld |  | 
						
							| 56 | 11 | adantr |  | 
						
							| 57 | 55 56 | rpcxpcld |  | 
						
							| 58 | 57 | rpred |  | 
						
							| 59 | 26 | adantrr |  | 
						
							| 60 | 59 | abscld |  | 
						
							| 61 | 31 | adantrr |  | 
						
							| 62 | 61 | abscld |  | 
						
							| 63 | 49 56 | rpcxpcld |  | 
						
							| 64 | 63 | rpred |  | 
						
							| 65 | 35 | adantrr |  | 
						
							| 66 |  | simpll |  | 
						
							| 67 |  | abscxp |  | 
						
							| 68 | 49 66 67 | syl2anc |  | 
						
							| 69 | 66 | recld |  | 
						
							| 70 |  | max2 |  | 
						
							| 71 | 9 69 70 | sylancr |  | 
						
							| 72 | 27 | ad2antrl |  | 
						
							| 73 |  | loge |  | 
						
							| 74 |  | ere |  | 
						
							| 75 | 74 | a1i |  | 
						
							| 76 |  | egt2lt3 |  | 
						
							| 77 | 76 | simpri |  | 
						
							| 78 | 77 | a1i |  | 
						
							| 79 | 75 44 42 78 47 | ltletrd |  | 
						
							| 80 |  | epr |  | 
						
							| 81 |  | logltb |  | 
						
							| 82 | 80 50 81 | sylancr |  | 
						
							| 83 | 79 82 | mpbid |  | 
						
							| 84 | 73 83 | eqbrtrrid |  | 
						
							| 85 | 72 84 69 56 | cxpled |  | 
						
							| 86 | 71 85 | mpbid |  | 
						
							| 87 | 68 86 | eqbrtrd |  | 
						
							| 88 | 62 64 65 87 | lediv1dd |  | 
						
							| 89 | 31 36 37 | absdivd |  | 
						
							| 90 | 89 | adantrr |  | 
						
							| 91 | 65 | rprege0d |  | 
						
							| 92 |  | absid |  | 
						
							| 93 | 91 92 | syl |  | 
						
							| 94 | 93 | oveq2d |  | 
						
							| 95 | 90 94 | eqtrd |  | 
						
							| 96 | 49 | rprege0d |  | 
						
							| 97 | 11 | recnd |  | 
						
							| 98 | 97 | adantr |  | 
						
							| 99 |  | divcxp |  | 
						
							| 100 | 96 54 98 99 | syl3anc |  | 
						
							| 101 | 50 53 98 | cxpmuld |  | 
						
							| 102 | 51 | recnd |  | 
						
							| 103 | 52 | rpne0d |  | 
						
							| 104 | 102 98 103 | divcan1d |  | 
						
							| 105 | 104 | oveq2d |  | 
						
							| 106 | 101 105 | eqtr3d |  | 
						
							| 107 | 106 | oveq2d |  | 
						
							| 108 | 100 107 | eqtrd |  | 
						
							| 109 | 88 95 108 | 3brtr4d |  | 
						
							| 110 | 58 | leabsd |  | 
						
							| 111 | 40 58 60 109 110 | letrd |  | 
						
							| 112 | 39 | subid1d |  | 
						
							| 113 | 112 | fveq2d |  | 
						
							| 114 | 59 | subid1d |  | 
						
							| 115 | 114 | fveq2d |  | 
						
							| 116 | 111 113 115 | 3brtr4d |  | 
						
							| 117 | 2 4 22 26 38 116 | rlimsqzlem |  |