Metamath Proof Explorer


Theorem cxploglim2

Description: Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016)

Ref Expression
Assertion cxploglim2 AB+n+lognAnB0

Proof

Step Hyp Ref Expression
1 3re 3
2 1 a1i AB+3
3 0red AB+0
4 3 recnd AB+0
5 ovexd AB+n+lognnBif1AA1V
6 simpr AB+B+
7 recl AA
8 7 adantr AB+A
9 1re 1
10 ifcl A1if1AA1
11 8 9 10 sylancl AB+if1AA1
12 9 a1i AB+1
13 0lt1 0<1
14 13 a1i AB+0<1
15 max1 1A1if1AA1
16 9 8 15 sylancr AB+1if1AA1
17 3 12 11 14 16 ltletrd AB+0<if1AA1
18 11 17 elrpd AB+if1AA1+
19 6 18 rpdivcld AB+Bif1AA1+
20 cxploglim Bif1AA1+n+lognnBif1AA10
21 19 20 syl AB+n+lognnBif1AA10
22 5 21 18 rlimcxp AB+n+lognnBif1AA1if1AA10
23 5 21 rlimmptrcl AB+n+lognnBif1AA1
24 11 adantr AB+n+if1AA1
25 24 recnd AB+n+if1AA1
26 23 25 cxpcld AB+n+lognnBif1AA1if1AA1
27 relogcl n+logn
28 27 adantl AB+n+logn
29 28 recnd AB+n+logn
30 simpll AB+n+A
31 29 30 cxpcld AB+n+lognA
32 simpr AB+n+n+
33 rpre B+B
34 33 ad2antlr AB+n+B
35 32 34 rpcxpcld AB+n+nB+
36 35 rpcnd AB+n+nB
37 35 rpne0d AB+n+nB0
38 31 36 37 divcld AB+n+lognAnB
39 38 adantrr AB+n+3nlognAnB
40 39 abscld AB+n+3nlognAnB
41 rpre n+n
42 41 ad2antrl AB+n+3nn
43 9 a1i AB+n+3n1
44 1 a1i AB+n+3n3
45 1lt3 1<3
46 45 a1i AB+n+3n1<3
47 simprr AB+n+3n3n
48 43 44 42 46 47 ltletrd AB+n+3n1<n
49 42 48 rplogcld AB+n+3nlogn+
50 32 adantrr AB+n+3nn+
51 33 ad2antlr AB+n+3nB
52 18 adantr AB+n+3nif1AA1+
53 51 52 rerpdivcld AB+n+3nBif1AA1
54 50 53 rpcxpcld AB+n+3nnBif1AA1+
55 49 54 rpdivcld AB+n+3nlognnBif1AA1+
56 11 adantr AB+n+3nif1AA1
57 55 56 rpcxpcld AB+n+3nlognnBif1AA1if1AA1+
58 57 rpred AB+n+3nlognnBif1AA1if1AA1
59 26 adantrr AB+n+3nlognnBif1AA1if1AA1
60 59 abscld AB+n+3nlognnBif1AA1if1AA1
61 31 adantrr AB+n+3nlognA
62 61 abscld AB+n+3nlognA
63 49 56 rpcxpcld AB+n+3nlognif1AA1+
64 63 rpred AB+n+3nlognif1AA1
65 35 adantrr AB+n+3nnB+
66 simpll AB+n+3nA
67 abscxp logn+AlognA=lognA
68 49 66 67 syl2anc AB+n+3nlognA=lognA
69 66 recld AB+n+3nA
70 max2 1AAif1AA1
71 9 69 70 sylancr AB+n+3nAif1AA1
72 27 ad2antrl AB+n+3nlogn
73 loge loge=1
74 ere e
75 74 a1i AB+n+3ne
76 egt2lt3 2<ee<3
77 76 simpri e<3
78 77 a1i AB+n+3ne<3
79 75 44 42 78 47 ltletrd AB+n+3ne<n
80 epr e+
81 logltb e+n+e<nloge<logn
82 80 50 81 sylancr AB+n+3ne<nloge<logn
83 79 82 mpbid AB+n+3nloge<logn
84 73 83 eqbrtrrid AB+n+3n1<logn
85 72 84 69 56 cxpled AB+n+3nAif1AA1lognAlognif1AA1
86 71 85 mpbid AB+n+3nlognAlognif1AA1
87 68 86 eqbrtrd AB+n+3nlognAlognif1AA1
88 62 64 65 87 lediv1dd AB+n+3nlognAnBlognif1AA1nB
89 31 36 37 absdivd AB+n+lognAnB=lognAnB
90 89 adantrr AB+n+3nlognAnB=lognAnB
91 65 rprege0d AB+n+3nnB0nB
92 absid nB0nBnB=nB
93 91 92 syl AB+n+3nnB=nB
94 93 oveq2d AB+n+3nlognAnB=lognAnB
95 90 94 eqtrd AB+n+3nlognAnB=lognAnB
96 49 rprege0d AB+n+3nlogn0logn
97 11 recnd AB+if1AA1
98 97 adantr AB+n+3nif1AA1
99 divcxp logn0lognnBif1AA1+if1AA1lognnBif1AA1if1AA1=lognif1AA1nBif1AA1if1AA1
100 96 54 98 99 syl3anc AB+n+3nlognnBif1AA1if1AA1=lognif1AA1nBif1AA1if1AA1
101 50 53 98 cxpmuld AB+n+3nnBif1AA1if1AA1=nBif1AA1if1AA1
102 51 recnd AB+n+3nB
103 52 rpne0d AB+n+3nif1AA10
104 102 98 103 divcan1d AB+n+3nBif1AA1if1AA1=B
105 104 oveq2d AB+n+3nnBif1AA1if1AA1=nB
106 101 105 eqtr3d AB+n+3nnBif1AA1if1AA1=nB
107 106 oveq2d AB+n+3nlognif1AA1nBif1AA1if1AA1=lognif1AA1nB
108 100 107 eqtrd AB+n+3nlognnBif1AA1if1AA1=lognif1AA1nB
109 88 95 108 3brtr4d AB+n+3nlognAnBlognnBif1AA1if1AA1
110 58 leabsd AB+n+3nlognnBif1AA1if1AA1lognnBif1AA1if1AA1
111 40 58 60 109 110 letrd AB+n+3nlognAnBlognnBif1AA1if1AA1
112 39 subid1d AB+n+3nlognAnB0=lognAnB
113 112 fveq2d AB+n+3nlognAnB0=lognAnB
114 59 subid1d AB+n+3nlognnBif1AA1if1AA10=lognnBif1AA1if1AA1
115 114 fveq2d AB+n+3nlognnBif1AA1if1AA10=lognnBif1AA1if1AA1
116 111 113 115 3brtr4d AB+n+3nlognAnB0lognnBif1AA1if1AA10
117 2 4 22 26 38 116 rlimsqzlem AB+n+lognAnB0