Metamath Proof Explorer


Theorem cygznlem3

Description: A cyclic group with n elements is isomorphic to ZZ / n ZZ . (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygzn.b B=BaseG
cygzn.n N=ifBFinB0
cygzn.y Y=/N
cygzn.m ·˙=G
cygzn.l L=ℤRHomY
cygzn.e E=xB|rannn·˙x=B
cygzn.g φGCycGrp
cygzn.x φXE
cygzn.f F=ranmLmm·˙X
Assertion cygznlem3 φG𝑔Y

Proof

Step Hyp Ref Expression
1 cygzn.b B=BaseG
2 cygzn.n N=ifBFinB0
3 cygzn.y Y=/N
4 cygzn.m ·˙=G
5 cygzn.l L=ℤRHomY
6 cygzn.e E=xB|rannn·˙x=B
7 cygzn.g φGCycGrp
8 cygzn.x φXE
9 cygzn.f F=ranmLmm·˙X
10 eqid BaseY=BaseY
11 eqid +Y=+Y
12 eqid +G=+G
13 hashcl BFinB0
14 13 adantl φBFinB0
15 0nn0 00
16 15 a1i φ¬BFin00
17 14 16 ifclda φifBFinB00
18 2 17 eqeltrid φN0
19 3 zncrng N0YCRing
20 crngring YCRingYRing
21 ringgrp YRingYGrp
22 18 19 20 21 4syl φYGrp
23 cyggrp GCycGrpGGrp
24 7 23 syl φGGrp
25 1 2 3 4 5 6 7 8 9 cygznlem2a φF:BaseYB
26 3 10 5 znzrhfo N0L:ontoBaseY
27 18 26 syl φL:ontoBaseY
28 foelrn L:ontoBaseYaBaseYia=Li
29 27 28 sylan φaBaseYia=Li
30 foelrn L:ontoBaseYbBaseYjb=Lj
31 27 30 sylan φbBaseYjb=Lj
32 29 31 anim12dan φaBaseYbBaseYia=Lijb=Lj
33 reeanv ija=Lib=Ljia=Lijb=Lj
34 24 adantr φijGGrp
35 simprl φiji
36 simprr φijj
37 1 4 6 iscyggen XEXBrannn·˙X=B
38 37 simplbi XEXB
39 8 38 syl φXB
40 39 adantr φijXB
41 1 4 12 mulgdir GGrpijXBi+j·˙X=i·˙X+Gj·˙X
42 34 35 36 40 41 syl13anc φiji+j·˙X=i·˙X+Gj·˙X
43 18 19 syl φYCRing
44 5 zrhrhm YRingLringRingHomY
45 rhmghm LringRingHomYLringGrpHomY
46 43 20 44 45 4syl φLringGrpHomY
47 46 adantr φijLringGrpHomY
48 zringbas =Basering
49 zringplusg +=+ring
50 48 49 11 ghmlin LringGrpHomYijLi+j=Li+YLj
51 47 35 36 50 syl3anc φijLi+j=Li+YLj
52 51 fveq2d φijFLi+j=FLi+YLj
53 zaddcl iji+j
54 1 2 3 4 5 6 7 8 9 cygznlem2 φi+jFLi+j=i+j·˙X
55 53 54 sylan2 φijFLi+j=i+j·˙X
56 52 55 eqtr3d φijFLi+YLj=i+j·˙X
57 1 2 3 4 5 6 7 8 9 cygznlem2 φiFLi=i·˙X
58 57 adantrr φijFLi=i·˙X
59 1 2 3 4 5 6 7 8 9 cygznlem2 φjFLj=j·˙X
60 59 adantrl φijFLj=j·˙X
61 58 60 oveq12d φijFLi+GFLj=i·˙X+Gj·˙X
62 42 56 61 3eqtr4d φijFLi+YLj=FLi+GFLj
63 oveq12 a=Lib=Lja+Yb=Li+YLj
64 63 fveq2d a=Lib=LjFa+Yb=FLi+YLj
65 fveq2 a=LiFa=FLi
66 fveq2 b=LjFb=FLj
67 65 66 oveqan12d a=Lib=LjFa+GFb=FLi+GFLj
68 64 67 eqeq12d a=Lib=LjFa+Yb=Fa+GFbFLi+YLj=FLi+GFLj
69 62 68 syl5ibrcom φija=Lib=LjFa+Yb=Fa+GFb
70 69 rexlimdvva φija=Lib=LjFa+Yb=Fa+GFb
71 33 70 biimtrrid φia=Lijb=LjFa+Yb=Fa+GFb
72 71 imp φia=Lijb=LjFa+Yb=Fa+GFb
73 32 72 syldan φaBaseYbBaseYFa+Yb=Fa+GFb
74 10 1 11 12 22 24 25 73 isghmd φFYGrpHomG
75 58 60 eqeq12d φijFLi=FLji·˙X=j·˙X
76 1 2 3 4 5 6 7 8 cygznlem1 φijLi=Lji·˙X=j·˙X
77 75 76 bitr4d φijFLi=FLjLi=Lj
78 77 biimpd φijFLi=FLjLi=Lj
79 65 66 eqeqan12d a=Lib=LjFa=FbFLi=FLj
80 eqeq12 a=Lib=Lja=bLi=Lj
81 79 80 imbi12d a=Lib=LjFa=Fba=bFLi=FLjLi=Lj
82 78 81 syl5ibrcom φija=Lib=LjFa=Fba=b
83 82 rexlimdvva φija=Lib=LjFa=Fba=b
84 33 83 biimtrrid φia=Lijb=LjFa=Fba=b
85 84 imp φia=Lijb=LjFa=Fba=b
86 32 85 syldan φaBaseYbBaseYFa=Fba=b
87 86 ralrimivva φaBaseYbBaseYFa=Fba=b
88 dff13 F:BaseY1-1BF:BaseYBaBaseYbBaseYFa=Fba=b
89 25 87 88 sylanbrc φF:BaseY1-1B
90 1 4 6 iscyggen2 GGrpXEXBzBnz=n·˙X
91 24 90 syl φXEXBzBnz=n·˙X
92 8 91 mpbid φXBzBnz=n·˙X
93 92 simprd φzBnz=n·˙X
94 oveq1 n=jn·˙X=j·˙X
95 94 eqeq2d n=jz=n·˙Xz=j·˙X
96 95 cbvrexvw nz=n·˙Xjz=j·˙X
97 27 adantr φzBL:ontoBaseY
98 fof L:ontoBaseYL:BaseY
99 97 98 syl φzBL:BaseY
100 99 ffvelcdmda φzBjLjBaseY
101 59 adantlr φzBjFLj=j·˙X
102 101 eqcomd φzBjj·˙X=FLj
103 fveq2 a=LjFa=FLj
104 103 rspceeqv LjBaseYj·˙X=FLjaBaseYj·˙X=Fa
105 100 102 104 syl2anc φzBjaBaseYj·˙X=Fa
106 eqeq1 z=j·˙Xz=Faj·˙X=Fa
107 106 rexbidv z=j·˙XaBaseYz=FaaBaseYj·˙X=Fa
108 105 107 syl5ibrcom φzBjz=j·˙XaBaseYz=Fa
109 108 rexlimdva φzBjz=j·˙XaBaseYz=Fa
110 96 109 biimtrid φzBnz=n·˙XaBaseYz=Fa
111 110 ralimdva φzBnz=n·˙XzBaBaseYz=Fa
112 93 111 mpd φzBaBaseYz=Fa
113 dffo3 F:BaseYontoBF:BaseYBzBaBaseYz=Fa
114 25 112 113 sylanbrc φF:BaseYontoB
115 df-f1o F:BaseY1-1 ontoBF:BaseY1-1BF:BaseYontoB
116 89 114 115 sylanbrc φF:BaseY1-1 ontoB
117 10 1 isgim FYGrpIsoGFYGrpHomGF:BaseY1-1 ontoB
118 74 116 117 sylanbrc φFYGrpIsoG
119 brgici FYGrpIsoGY𝑔G
120 gicsym Y𝑔GG𝑔Y
121 118 119 120 3syl φG𝑔Y