| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibintcl.h |
|
| 2 |
|
dibintcl.i |
|
| 3 |
1 2
|
dibf11N |
|
| 4 |
3
|
adantr |
|
| 5 |
|
f1ofn |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
cnvimass |
|
| 8 |
|
fnssres |
|
| 9 |
6 7 8
|
sylancl |
|
| 10 |
|
fniinfv |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
df-ima |
|
| 13 |
|
f1ofo |
|
| 14 |
3 13
|
syl |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simprl |
|
| 17 |
|
foimacnv |
|
| 18 |
15 16 17
|
syl2anc |
|
| 19 |
12 18
|
eqtr3id |
|
| 20 |
19
|
inteqd |
|
| 21 |
11 20
|
eqtrd |
|
| 22 |
|
simpl |
|
| 23 |
7
|
a1i |
|
| 24 |
|
simprr |
|
| 25 |
|
n0 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
16
|
sselda |
|
| 28 |
3
|
ad2antrr |
|
| 29 |
28 5
|
syl |
|
| 30 |
|
fvelrnb |
|
| 31 |
29 30
|
syl |
|
| 32 |
27 31
|
mpbid |
|
| 33 |
|
f1ofun |
|
| 34 |
3 33
|
syl |
|
| 35 |
34
|
adantr |
|
| 36 |
|
fvimacnv |
|
| 37 |
35 36
|
sylan |
|
| 38 |
|
ne0i |
|
| 39 |
37 38
|
biimtrdi |
|
| 40 |
39
|
ex |
|
| 41 |
|
eleq1 |
|
| 42 |
41
|
biimprd |
|
| 43 |
42
|
imim1d |
|
| 44 |
40 43
|
syl9 |
|
| 45 |
44
|
com24 |
|
| 46 |
45
|
imp |
|
| 47 |
46
|
rexlimdv |
|
| 48 |
32 47
|
mpd |
|
| 49 |
26 48
|
exlimddv |
|
| 50 |
|
eqid |
|
| 51 |
50 1 2
|
dibglbN |
|
| 52 |
22 23 49 51
|
syl12anc |
|
| 53 |
|
fvres |
|
| 54 |
53
|
iineq2i |
|
| 55 |
52 54
|
eqtr4di |
|
| 56 |
|
hlclat |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
|
eqid |
|
| 59 |
|
eqid |
|
| 60 |
58 59 1 2
|
dibdmN |
|
| 61 |
|
ssrab2 |
|
| 62 |
60 61
|
eqsstrdi |
|
| 63 |
62
|
adantr |
|
| 64 |
7 63
|
sstrid |
|
| 65 |
58 50
|
clatglbcl |
|
| 66 |
57 64 65
|
syl2anc |
|
| 67 |
|
n0 |
|
| 68 |
49 67
|
sylib |
|
| 69 |
|
hllat |
|
| 70 |
69
|
ad3antrrr |
|
| 71 |
66
|
adantr |
|
| 72 |
64
|
sselda |
|
| 73 |
58 1
|
lhpbase |
|
| 74 |
73
|
ad3antlr |
|
| 75 |
56
|
ad3antrrr |
|
| 76 |
60
|
adantr |
|
| 77 |
7 76
|
sseqtrid |
|
| 78 |
77 61
|
sstrdi |
|
| 79 |
78
|
adantr |
|
| 80 |
|
simpr |
|
| 81 |
58 59 50
|
clatglble |
|
| 82 |
75 79 80 81
|
syl3anc |
|
| 83 |
7
|
sseli |
|
| 84 |
83
|
adantl |
|
| 85 |
58 59 1 2
|
dibeldmN |
|
| 86 |
85
|
ad2antrr |
|
| 87 |
84 86
|
mpbid |
|
| 88 |
87
|
simprd |
|
| 89 |
58 59 70 71 72 74 82 88
|
lattrd |
|
| 90 |
68 89
|
exlimddv |
|
| 91 |
58 59 1 2
|
dibeldmN |
|
| 92 |
91
|
adantr |
|
| 93 |
66 90 92
|
mpbir2and |
|
| 94 |
1 2
|
dibclN |
|
| 95 |
93 94
|
syldan |
|
| 96 |
55 95
|
eqeltrrd |
|
| 97 |
21 96
|
eqeltrrd |
|