Metamath Proof Explorer


Theorem diclspsn

Description: The value of isomorphism C is spanned by vector F . Part of proof of Lemma N of Crawley p. 121 line 29. (Contributed by NM, 21-Feb-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses diclspsn.l ˙ = K
diclspsn.a A = Atoms K
diclspsn.h H = LHyp K
diclspsn.p P = oc K W
diclspsn.t T = LTrn K W
diclspsn.i I = DIsoC K W
diclspsn.u U = DVecH K W
diclspsn.n N = LSpan U
diclspsn.f F = ι f T | f P = Q
Assertion diclspsn K HL W H Q A ¬ Q ˙ W I Q = N F I T

Proof

Step Hyp Ref Expression
1 diclspsn.l ˙ = K
2 diclspsn.a A = Atoms K
3 diclspsn.h H = LHyp K
4 diclspsn.p P = oc K W
5 diclspsn.t T = LTrn K W
6 diclspsn.i I = DIsoC K W
7 diclspsn.u U = DVecH K W
8 diclspsn.n N = LSpan U
9 diclspsn.f F = ι f T | f P = Q
10 df-rab v T × TEndo K W | x Base Scalar U v = x U F I T = v | v T × TEndo K W x Base Scalar U v = x U F I T
11 relopab Rel y z | y = z F z TEndo K W
12 eqid TEndo K W = TEndo K W
13 1 2 3 4 5 12 6 9 dicval2 K HL W H Q A ¬ Q ˙ W I Q = y z | y = z F z TEndo K W
14 13 releqd K HL W H Q A ¬ Q ˙ W Rel I Q Rel y z | y = z F z TEndo K W
15 11 14 mpbiri K HL W H Q A ¬ Q ˙ W Rel I Q
16 ssrab2 v T × TEndo K W | x Base Scalar U v = x U F I T T × TEndo K W
17 relxp Rel T × TEndo K W
18 relss v T × TEndo K W | x Base Scalar U v = x U F I T T × TEndo K W Rel T × TEndo K W Rel v T × TEndo K W | x Base Scalar U v = x U F I T
19 16 17 18 mp2 Rel v T × TEndo K W | x Base Scalar U v = x U F I T
20 19 a1i K HL W H Q A ¬ Q ˙ W Rel v T × TEndo K W | x Base Scalar U v = x U F I T
21 id K HL W H Q A ¬ Q ˙ W K HL W H Q A ¬ Q ˙ W
22 vex g V
23 vex s V
24 1 2 3 4 5 12 6 9 22 23 dicopelval2 K HL W H Q A ¬ Q ˙ W g s I Q g = s F s TEndo K W
25 simprl K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W g = s F
26 simpll K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W K HL W H
27 simprr K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W s TEndo K W
28 simpl K HL W H Q A ¬ Q ˙ W K HL W H
29 1 2 3 4 lhpocnel2 K HL W H P A ¬ P ˙ W
30 29 adantr K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W
31 simpr K HL W H Q A ¬ Q ˙ W Q A ¬ Q ˙ W
32 1 2 3 5 9 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T
33 28 30 31 32 syl3anc K HL W H Q A ¬ Q ˙ W F T
34 33 adantr K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W F T
35 3 5 12 tendocl K HL W H s TEndo K W F T s F T
36 26 27 34 35 syl3anc K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W s F T
37 25 36 eqeltrd K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W g T
38 37 27 25 3jca K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W g T s TEndo K W g = s F
39 simpr3 K HL W H Q A ¬ Q ˙ W g T s TEndo K W g = s F g = s F
40 simpr2 K HL W H Q A ¬ Q ˙ W g T s TEndo K W g = s F s TEndo K W
41 39 40 jca K HL W H Q A ¬ Q ˙ W g T s TEndo K W g = s F g = s F s TEndo K W
42 38 41 impbida K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W g T s TEndo K W g = s F
43 eqid Scalar U = Scalar U
44 eqid Base Scalar U = Base Scalar U
45 3 12 7 43 44 dvhbase K HL W H Base Scalar U = TEndo K W
46 45 adantr K HL W H Q A ¬ Q ˙ W Base Scalar U = TEndo K W
47 46 rexeqdv K HL W H Q A ¬ Q ˙ W x Base Scalar U g s = x U F I T x TEndo K W g s = x U F I T
48 simpll K HL W H Q A ¬ Q ˙ W x TEndo K W K HL W H
49 simpr K HL W H Q A ¬ Q ˙ W x TEndo K W x TEndo K W
50 33 adantr K HL W H Q A ¬ Q ˙ W x TEndo K W F T
51 3 5 12 tendoidcl K HL W H I T TEndo K W
52 51 ad2antrr K HL W H Q A ¬ Q ˙ W x TEndo K W I T TEndo K W
53 eqid U = U
54 3 5 12 7 53 dvhopvsca K HL W H x TEndo K W F T I T TEndo K W x U F I T = x F x I T
55 48 49 50 52 54 syl13anc K HL W H Q A ¬ Q ˙ W x TEndo K W x U F I T = x F x I T
56 55 eqeq2d K HL W H Q A ¬ Q ˙ W x TEndo K W g s = x U F I T g s = x F x I T
57 22 23 opth g s = x F x I T g = x F s = x I T
58 56 57 syl6bb K HL W H Q A ¬ Q ˙ W x TEndo K W g s = x U F I T g = x F s = x I T
59 3 5 12 tendo1mulr K HL W H x TEndo K W x I T = x
60 59 adantlr K HL W H Q A ¬ Q ˙ W x TEndo K W x I T = x
61 60 eqeq2d K HL W H Q A ¬ Q ˙ W x TEndo K W s = x I T s = x
62 equcom s = x x = s
63 61 62 syl6bb K HL W H Q A ¬ Q ˙ W x TEndo K W s = x I T x = s
64 63 anbi2d K HL W H Q A ¬ Q ˙ W x TEndo K W g = x F s = x I T g = x F x = s
65 58 64 bitrd K HL W H Q A ¬ Q ˙ W x TEndo K W g s = x U F I T g = x F x = s
66 ancom g = x F x = s x = s g = x F
67 65 66 syl6bb K HL W H Q A ¬ Q ˙ W x TEndo K W g s = x U F I T x = s g = x F
68 67 rexbidva K HL W H Q A ¬ Q ˙ W x TEndo K W g s = x U F I T x TEndo K W x = s g = x F
69 47 68 bitrd K HL W H Q A ¬ Q ˙ W x Base Scalar U g s = x U F I T x TEndo K W x = s g = x F
70 69 3anbi3d K HL W H Q A ¬ Q ˙ W g T s TEndo K W x Base Scalar U g s = x U F I T g T s TEndo K W x TEndo K W x = s g = x F
71 fveq1 x = s x F = s F
72 71 eqeq2d x = s g = x F g = s F
73 72 ceqsrexv s TEndo K W x TEndo K W x = s g = x F g = s F
74 73 pm5.32i s TEndo K W x TEndo K W x = s g = x F s TEndo K W g = s F
75 74 anbi2i g T s TEndo K W x TEndo K W x = s g = x F g T s TEndo K W g = s F
76 3anass g T s TEndo K W x TEndo K W x = s g = x F g T s TEndo K W x TEndo K W x = s g = x F
77 3anass g T s TEndo K W g = s F g T s TEndo K W g = s F
78 75 76 77 3bitr4i g T s TEndo K W x TEndo K W x = s g = x F g T s TEndo K W g = s F
79 70 78 syl6rbb K HL W H Q A ¬ Q ˙ W g T s TEndo K W g = s F g T s TEndo K W x Base Scalar U g s = x U F I T
80 42 79 bitrd K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W g T s TEndo K W x Base Scalar U g s = x U F I T
81 eqeq1 v = g s v = x U F I T g s = x U F I T
82 81 rexbidv v = g s x Base Scalar U v = x U F I T x Base Scalar U g s = x U F I T
83 82 rabxp v T × TEndo K W | x Base Scalar U v = x U F I T = g s | g T s TEndo K W x Base Scalar U g s = x U F I T
84 83 eleq2i g s v T × TEndo K W | x Base Scalar U v = x U F I T g s g s | g T s TEndo K W x Base Scalar U g s = x U F I T
85 opabidw g s g s | g T s TEndo K W x Base Scalar U g s = x U F I T g T s TEndo K W x Base Scalar U g s = x U F I T
86 84 85 bitr2i g T s TEndo K W x Base Scalar U g s = x U F I T g s v T × TEndo K W | x Base Scalar U v = x U F I T
87 80 86 syl6bb K HL W H Q A ¬ Q ˙ W g = s F s TEndo K W g s v T × TEndo K W | x Base Scalar U v = x U F I T
88 24 87 bitrd K HL W H Q A ¬ Q ˙ W g s I Q g s v T × TEndo K W | x Base Scalar U v = x U F I T
89 88 eqrelrdv2 Rel I Q Rel v T × TEndo K W | x Base Scalar U v = x U F I T K HL W H Q A ¬ Q ˙ W I Q = v T × TEndo K W | x Base Scalar U v = x U F I T
90 15 20 21 89 syl21anc K HL W H Q A ¬ Q ˙ W I Q = v T × TEndo K W | x Base Scalar U v = x U F I T
91 simpll K HL W H Q A ¬ Q ˙ W x Base Scalar U K HL W H
92 46 eleq2d K HL W H Q A ¬ Q ˙ W x Base Scalar U x TEndo K W
93 92 biimpa K HL W H Q A ¬ Q ˙ W x Base Scalar U x TEndo K W
94 51 adantr K HL W H Q A ¬ Q ˙ W I T TEndo K W
95 opelxpi F T I T TEndo K W F I T T × TEndo K W
96 33 94 95 syl2anc K HL W H Q A ¬ Q ˙ W F I T T × TEndo K W
97 96 adantr K HL W H Q A ¬ Q ˙ W x Base Scalar U F I T T × TEndo K W
98 3 5 12 7 53 dvhvscacl K HL W H x TEndo K W F I T T × TEndo K W x U F I T T × TEndo K W
99 91 93 97 98 syl12anc K HL W H Q A ¬ Q ˙ W x Base Scalar U x U F I T T × TEndo K W
100 eleq1a x U F I T T × TEndo K W v = x U F I T v T × TEndo K W
101 99 100 syl K HL W H Q A ¬ Q ˙ W x Base Scalar U v = x U F I T v T × TEndo K W
102 101 rexlimdva K HL W H Q A ¬ Q ˙ W x Base Scalar U v = x U F I T v T × TEndo K W
103 102 pm4.71rd K HL W H Q A ¬ Q ˙ W x Base Scalar U v = x U F I T v T × TEndo K W x Base Scalar U v = x U F I T
104 103 abbidv K HL W H Q A ¬ Q ˙ W v | x Base Scalar U v = x U F I T = v | v T × TEndo K W x Base Scalar U v = x U F I T
105 10 90 104 3eqtr4a K HL W H Q A ¬ Q ˙ W I Q = v | x Base Scalar U v = x U F I T
106 3 7 28 dvhlmod K HL W H Q A ¬ Q ˙ W U LMod
107 eqid Base U = Base U
108 3 5 12 7 107 dvhelvbasei K HL W H F T I T TEndo K W F I T Base U
109 28 33 94 108 syl12anc K HL W H Q A ¬ Q ˙ W F I T Base U
110 43 44 107 53 8 lspsn U LMod F I T Base U N F I T = v | x Base Scalar U v = x U F I T
111 106 109 110 syl2anc K HL W H Q A ¬ Q ˙ W N F I T = v | x Base Scalar U v = x U F I T
112 105 111 eqtr4d K HL W H Q A ¬ Q ˙ W I Q = N F I T