Metamath Proof Explorer


Theorem diophren

Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014) (Revised by Stefan O'Rear, 5-Jun-2015)

Ref Expression
Assertion diophren SDiophNM0F:1N1Ma01M|aFSDiophM

Proof

Step Hyp Ref Expression
1 zex V
2 difexg VV
3 1 2 ax-mp V
4 ominf ¬ωFin
5 nnuz =1
6 0p1e1 0+1=1
7 6 fveq2i 0+1=1
8 5 7 eqtr4i =0+1
9 8 difeq2i =0+1
10 0z 0
11 lzenom 00+1ω
12 10 11 ax-mp 0+1ω
13 9 12 eqbrtri ω
14 enfi ωFinωFin
15 13 14 ax-mp FinωFin
16 4 15 mtbir ¬Fin
17 disjdifr =
18 3 16 17 eldioph4b SDiophNN0bmzPoly1NS=c01N|d0bcd=0
19 simpr M0F:1N1MN0bmzPoly1Na01Ma01M
20 simp-4r M0F:1N1MN0bmzPoly1Na01MF:1N1M
21 ovex 1NV
22 21 mapco2 a01MF:1N1MaF01N
23 19 20 22 syl2anc M0F:1N1MN0bmzPoly1Na01MaF01N
24 uneq1 c=aFcd=aFd
25 24 fveqeq2d c=aFbcd=0baFd=0
26 25 rexbidv c=aFd0bcd=0d0baFd=0
27 26 elrab3 aF01NaFc01N|d0bcd=0d0baFd=0
28 23 27 syl M0F:1N1MN0bmzPoly1Na01MaFc01N|d0bcd=0d0baFd=0
29 simp-5r M0F:1N1MN0bmzPoly1Na01Md0F:1N1M
30 simplr M0F:1N1MN0bmzPoly1Na01Md0a01M
31 simpr M0F:1N1MN0bmzPoly1Na01Md0d0
32 coundi adFI=adFadI
33 coundir adF=aFdF
34 elmapi d0d:0
35 34 3ad2ant3 F:1N1Ma01Md0d:0
36 simp1 F:1N1Ma01Md0F:1N1M
37 incom 1M=1M
38 fz1ssnn 1M
39 disjdif =
40 ssdisj 1M=1M=
41 38 39 40 mp2an 1M=
42 37 41 eqtri 1M=
43 42 a1i F:1N1Ma01Md01M=
44 coeq0i d:0F:1N1M1M=dF=
45 35 36 43 44 syl3anc F:1N1Ma01Md0dF=
46 45 uneq2d F:1N1Ma01Md0aFdF=aF
47 33 46 eqtrid F:1N1Ma01Md0adF=aF
48 un0 aF=aF
49 47 48 eqtrdi F:1N1Ma01Md0adF=aF
50 coundir adI=aIdI
51 elmapi a01Ma:1M0
52 51 3ad2ant2 F:1N1Ma01Md0a:1M0
53 f1oi I:1-1 onto
54 f1of I:1-1 ontoI:
55 53 54 ax-mp I:
56 coeq0i a:1M0I:1M=aI=
57 55 41 56 mp3an23 a:1M0aI=
58 52 57 syl F:1N1Ma01Md0aI=
59 coires1 dI=d
60 ffn d:0dFn
61 fnresdm dFnd=d
62 34 60 61 3syl d0d=d
63 59 62 eqtrid d0dI=d
64 63 3ad2ant3 F:1N1Ma01Md0dI=d
65 58 64 uneq12d F:1N1Ma01Md0aIdI=d
66 50 65 eqtrid F:1N1Ma01Md0adI=d
67 uncom d=d
68 un0 d=d
69 67 68 eqtri d=d
70 66 69 eqtrdi F:1N1Ma01Md0adI=d
71 49 70 uneq12d F:1N1Ma01Md0adFadI=aFd
72 32 71 eqtr2id F:1N1Ma01Md0aFd=adFI
73 29 30 31 72 syl3anc M0F:1N1MN0bmzPoly1Na01Md0aFd=adFI
74 73 fveq2d M0F:1N1MN0bmzPoly1Na01Md0baFd=badFI
75 nn0ssz 0
76 mapss V001M1M
77 1 75 76 mp2an 01M1M
78 41 reseq2i a1M=a
79 res0 a=
80 78 79 eqtri a1M=
81 41 reseq2i d1M=d
82 res0 d=
83 81 82 eqtri d1M=
84 80 83 eqtr4i a1M=d1M
85 elmapresaun a01Md0a1M=d1Mad01M
86 uncom 1M=1M
87 86 oveq2i 01M=01M
88 85 87 eleqtrdi a01Md0a1M=d1Mad01M
89 84 88 mp3an3 a01Md0ad01M
90 77 89 sselid a01Md0ad1M
91 90 adantll M0F:1N1MN0bmzPoly1Na01Md0ad1M
92 coeq1 e=adeFI=adFI
93 92 fveq2d e=adbeFI=badFI
94 eqid e1MbeFI=e1MbeFI
95 fvex badFIV
96 93 94 95 fvmpt ad1Me1MbeFIad=badFI
97 91 96 syl M0F:1N1MN0bmzPoly1Na01Md0e1MbeFIad=badFI
98 74 97 eqtr4d M0F:1N1MN0bmzPoly1Na01Md0baFd=e1MbeFIad
99 98 eqeq1d M0F:1N1MN0bmzPoly1Na01Md0baFd=0e1MbeFIad=0
100 99 rexbidva M0F:1N1MN0bmzPoly1Na01Md0baFd=0d0e1MbeFIad=0
101 28 100 bitrd M0F:1N1MN0bmzPoly1Na01MaFc01N|d0bcd=0d0e1MbeFIad=0
102 101 rabbidva M0F:1N1MN0bmzPoly1Na01M|aFc01N|d0bcd=0=a01M|d0e1MbeFIad=0
103 simplll M0F:1N1MN0bmzPoly1NM0
104 ovex 1MV
105 3 104 unex 1MV
106 105 a1i M0F:1N1MN0bmzPoly1N1MV
107 simpr M0F:1N1MN0bmzPoly1NbmzPoly1N
108 55 a1i F:1N1MI:
109 id F:1N1MF:1N1M
110 incom 1N=1N
111 fz1ssnn 1N
112 ssdisj 1N=1N=
113 111 39 112 mp2an 1N=
114 110 113 eqtri 1N=
115 114 a1i F:1N1M1N=
116 fun I:F:1N1M1N=IF:1N1M
117 108 109 115 116 syl21anc F:1N1MIF:1N1M
118 uncom IF=FI
119 118 feq1i IF:1N1MFI:1N1M
120 117 119 sylib F:1N1MFI:1N1M
121 120 ad3antlr M0F:1N1MN0bmzPoly1NFI:1N1M
122 mzprename 1MVbmzPoly1NFI:1N1Me1MbeFImzPoly1M
123 106 107 121 122 syl3anc M0F:1N1MN0bmzPoly1Ne1MbeFImzPoly1M
124 3 16 17 eldioph4i M0e1MbeFImzPoly1Ma01M|d0e1MbeFIad=0DiophM
125 103 123 124 syl2anc M0F:1N1MN0bmzPoly1Na01M|d0e1MbeFIad=0DiophM
126 102 125 eqeltrd M0F:1N1MN0bmzPoly1Na01M|aFc01N|d0bcd=0DiophM
127 eleq2 S=c01N|d0bcd=0aFSaFc01N|d0bcd=0
128 127 rabbidv S=c01N|d0bcd=0a01M|aFS=a01M|aFc01N|d0bcd=0
129 128 eleq1d S=c01N|d0bcd=0a01M|aFSDiophMa01M|aFc01N|d0bcd=0DiophM
130 126 129 syl5ibrcom M0F:1N1MN0bmzPoly1NS=c01N|d0bcd=0a01M|aFSDiophM
131 130 rexlimdva M0F:1N1MN0bmzPoly1NS=c01N|d0bcd=0a01M|aFSDiophM
132 131 expimpd M0F:1N1MN0bmzPoly1NS=c01N|d0bcd=0a01M|aFSDiophM
133 18 132 biimtrid M0F:1N1MSDiophNa01M|aFSDiophM
134 133 impcom SDiophNM0F:1N1Ma01M|aFSDiophM
135 134 3impb SDiophNM0F:1N1Ma01M|aFSDiophM