Metamath Proof Explorer


Theorem djajN

Description: Transfer lattice join to DVecA partial vector space closed subspace join. Part of Lemma M of Crawley p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses djaj.k ˙=joinK
djaj.h H=LHypK
djaj.i I=DIsoAKW
djaj.j J=vAKW
Assertion djajN KHLWHXdomIYdomIIX˙Y=IXJIY

Proof

Step Hyp Ref Expression
1 djaj.k ˙=joinK
2 djaj.h H=LHypK
3 djaj.i I=DIsoAKW
4 djaj.j J=vAKW
5 hllat KHLKLat
6 5 ad2antrr KHLWHXdomIYdomIKLat
7 hlop KHLKOP
8 7 ad2antrr KHLWHXdomIYdomIKOP
9 eqid BaseK=BaseK
10 9 2 3 diadmclN KHLWHXdomIXBaseK
11 10 adantrr KHLWHXdomIYdomIXBaseK
12 eqid ocK=ocK
13 9 12 opoccl KOPXBaseKocKXBaseK
14 8 11 13 syl2anc KHLWHXdomIYdomIocKXBaseK
15 9 2 lhpbase WHWBaseK
16 15 ad2antlr KHLWHXdomIYdomIWBaseK
17 9 12 opoccl KOPWBaseKocKWBaseK
18 8 16 17 syl2anc KHLWHXdomIYdomIocKWBaseK
19 9 1 latjcl KLatocKXBaseKocKWBaseKocKX˙ocKWBaseK
20 6 14 18 19 syl3anc KHLWHXdomIYdomIocKX˙ocKWBaseK
21 eqid meetK=meetK
22 9 21 latmcl KLatocKX˙ocKWBaseKWBaseKocKX˙ocKWmeetKWBaseK
23 6 20 16 22 syl3anc KHLWHXdomIYdomIocKX˙ocKWmeetKWBaseK
24 9 2 3 diadmclN KHLWHYdomIYBaseK
25 24 adantrl KHLWHXdomIYdomIYBaseK
26 9 12 opoccl KOPYBaseKocKYBaseK
27 8 25 26 syl2anc KHLWHXdomIYdomIocKYBaseK
28 9 1 latjcl KLatocKYBaseKocKWBaseKocKY˙ocKWBaseK
29 6 27 18 28 syl3anc KHLWHXdomIYdomIocKY˙ocKWBaseK
30 9 21 latmcl KLatocKY˙ocKWBaseKWBaseKocKY˙ocKWmeetKWBaseK
31 6 29 16 30 syl3anc KHLWHXdomIYdomIocKY˙ocKWmeetKWBaseK
32 9 21 latmcl KLatocKX˙ocKWmeetKWBaseKocKY˙ocKWmeetKWBaseKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWBaseK
33 6 23 31 32 syl3anc KHLWHXdomIYdomIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWBaseK
34 eqid K=K
35 9 34 21 latmle2 KLatocKX˙ocKWmeetKWBaseKocKY˙ocKWmeetKWBaseKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWKocKY˙ocKWmeetKW
36 6 23 31 35 syl3anc KHLWHXdomIYdomIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWKocKY˙ocKWmeetKW
37 9 34 21 latmle2 KLatocKY˙ocKWBaseKWBaseKocKY˙ocKWmeetKWKW
38 6 29 16 37 syl3anc KHLWHXdomIYdomIocKY˙ocKWmeetKWKW
39 9 34 6 33 31 16 36 38 lattrd KHLWHXdomIYdomIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWKW
40 9 34 2 3 diaeldm KHLWHocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWdomIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWBaseKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWKW
41 40 adantr KHLWHXdomIYdomIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWdomIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWBaseKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWKW
42 33 39 41 mpbir2and KHLWHXdomIYdomIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWdomI
43 eqid LTrnKW=LTrnKW
44 eqid ocAKW=ocAKW
45 1 21 12 2 43 3 44 diaocN KHLWHocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKWdomIIocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW˙ocKWmeetKW=ocAKWIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW
46 42 45 syldan KHLWHXdomIYdomIIocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW˙ocKWmeetKW=ocAKWIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW
47 hloml KHLKOML
48 47 ad2antrr KHLWHXdomIYdomIKOML
49 9 1 latjcl KLatXBaseKYBaseKX˙YBaseK
50 6 11 25 49 syl3anc KHLWHXdomIYdomIX˙YBaseK
51 34 2 3 diadmleN KHLWHXdomIXKW
52 51 adantrr KHLWHXdomIYdomIXKW
53 34 2 3 diadmleN KHLWHYdomIYKW
54 53 adantrl KHLWHXdomIYdomIYKW
55 9 34 1 latjle12 KLatXBaseKYBaseKWBaseKXKWYKWX˙YKW
56 6 11 25 16 55 syl13anc KHLWHXdomIYdomIXKWYKWX˙YKW
57 52 54 56 mpbi2and KHLWHXdomIYdomIX˙YKW
58 9 34 1 21 12 omlspjN KOMLX˙YBaseKWBaseKX˙YKWX˙Y˙ocKWmeetKW=X˙Y
59 48 50 16 57 58 syl121anc KHLWHXdomIYdomIX˙Y˙ocKWmeetKW=X˙Y
60 9 1 latjidm KLatocKWBaseKocKW˙ocKW=ocKW
61 6 18 60 syl2anc KHLWHXdomIYdomIocKW˙ocKW=ocKW
62 61 oveq2d KHLWHXdomIYdomIX˙Y˙ocKW˙ocKW=X˙Y˙ocKW
63 9 1 latjass KLatX˙YBaseKocKWBaseKocKWBaseKX˙Y˙ocKW˙ocKW=X˙Y˙ocKW˙ocKW
64 6 50 18 18 63 syl13anc KHLWHXdomIYdomIX˙Y˙ocKW˙ocKW=X˙Y˙ocKW˙ocKW
65 hlol KHLKOL
66 65 ad2antrr KHLWHXdomIYdomIKOL
67 9 1 21 12 oldmm2 KOLX˙YBaseKWBaseKocKocKX˙YmeetKW=X˙Y˙ocKW
68 66 50 16 67 syl3anc KHLWHXdomIYdomIocKocKX˙YmeetKW=X˙Y˙ocKW
69 9 1 21 12 oldmj1 KOLXBaseKYBaseKocKX˙Y=ocKXmeetKocKY
70 66 11 25 69 syl3anc KHLWHXdomIYdomIocKX˙Y=ocKXmeetKocKY
71 9 34 21 latleeqm1 KLatXBaseKWBaseKXKWXmeetKW=X
72 6 11 16 71 syl3anc KHLWHXdomIYdomIXKWXmeetKW=X
73 52 72 mpbid KHLWHXdomIYdomIXmeetKW=X
74 73 fveq2d KHLWHXdomIYdomIocKXmeetKW=ocKX
75 9 1 21 12 oldmm1 KOLXBaseKWBaseKocKXmeetKW=ocKX˙ocKW
76 66 11 16 75 syl3anc KHLWHXdomIYdomIocKXmeetKW=ocKX˙ocKW
77 74 76 eqtr3d KHLWHXdomIYdomIocKX=ocKX˙ocKW
78 9 34 21 latleeqm1 KLatYBaseKWBaseKYKWYmeetKW=Y
79 6 25 16 78 syl3anc KHLWHXdomIYdomIYKWYmeetKW=Y
80 54 79 mpbid KHLWHXdomIYdomIYmeetKW=Y
81 80 fveq2d KHLWHXdomIYdomIocKYmeetKW=ocKY
82 9 1 21 12 oldmm1 KOLYBaseKWBaseKocKYmeetKW=ocKY˙ocKW
83 66 25 16 82 syl3anc KHLWHXdomIYdomIocKYmeetKW=ocKY˙ocKW
84 81 83 eqtr3d KHLWHXdomIYdomIocKY=ocKY˙ocKW
85 77 84 oveq12d KHLWHXdomIYdomIocKXmeetKocKY=ocKX˙ocKWmeetKocKY˙ocKW
86 70 85 eqtrd KHLWHXdomIYdomIocKX˙Y=ocKX˙ocKWmeetKocKY˙ocKW
87 86 oveq1d KHLWHXdomIYdomIocKX˙YmeetKW=ocKX˙ocKWmeetKocKY˙ocKWmeetKW
88 9 21 latmmdir KOLocKX˙ocKWBaseKocKY˙ocKWBaseKWBaseKocKX˙ocKWmeetKocKY˙ocKWmeetKW=ocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW
89 66 20 29 16 88 syl13anc KHLWHXdomIYdomIocKX˙ocKWmeetKocKY˙ocKWmeetKW=ocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW
90 87 89 eqtrd KHLWHXdomIYdomIocKX˙YmeetKW=ocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW
91 90 fveq2d KHLWHXdomIYdomIocKocKX˙YmeetKW=ocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW
92 68 91 eqtr3d KHLWHXdomIYdomIX˙Y˙ocKW=ocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW
93 92 oveq1d KHLWHXdomIYdomIX˙Y˙ocKW˙ocKW=ocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW˙ocKW
94 64 93 eqtr3d KHLWHXdomIYdomIX˙Y˙ocKW˙ocKW=ocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW˙ocKW
95 62 94 eqtr3d KHLWHXdomIYdomIX˙Y˙ocKW=ocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW˙ocKW
96 95 oveq1d KHLWHXdomIYdomIX˙Y˙ocKWmeetKW=ocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW˙ocKWmeetKW
97 59 96 eqtr3d KHLWHXdomIYdomIX˙Y=ocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW˙ocKWmeetKW
98 97 fveq2d KHLWHXdomIYdomIIX˙Y=IocKocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW˙ocKWmeetKW
99 simpl KHLWHXdomIYdomIKHLWH
100 2 3 diaclN KHLWHXdomIIXranI
101 100 adantrr KHLWHXdomIYdomIIXranI
102 2 43 3 diaelrnN KHLWHIXranIIXLTrnKW
103 101 102 syldan KHLWHXdomIYdomIIXLTrnKW
104 2 3 diaclN KHLWHYdomIIYranI
105 104 adantrl KHLWHXdomIYdomIIYranI
106 2 43 3 diaelrnN KHLWHIYranIIYLTrnKW
107 105 106 syldan KHLWHXdomIYdomIIYLTrnKW
108 2 43 3 44 4 djavalN KHLWHIXLTrnKWIYLTrnKWIXJIY=ocAKWocAKWIXocAKWIY
109 99 103 107 108 syl12anc KHLWHXdomIYdomIIXJIY=ocAKWocAKWIXocAKWIY
110 9 34 21 latmle2 KLatocKX˙ocKWBaseKWBaseKocKX˙ocKWmeetKWKW
111 6 20 16 110 syl3anc KHLWHXdomIYdomIocKX˙ocKWmeetKWKW
112 9 34 2 3 diaeldm KHLWHocKX˙ocKWmeetKWdomIocKX˙ocKWmeetKWBaseKocKX˙ocKWmeetKWKW
113 112 adantr KHLWHXdomIYdomIocKX˙ocKWmeetKWdomIocKX˙ocKWmeetKWBaseKocKX˙ocKWmeetKWKW
114 23 111 113 mpbir2and KHLWHXdomIYdomIocKX˙ocKWmeetKWdomI
115 9 34 2 3 diaeldm KHLWHocKY˙ocKWmeetKWdomIocKY˙ocKWmeetKWBaseKocKY˙ocKWmeetKWKW
116 115 adantr KHLWHXdomIYdomIocKY˙ocKWmeetKWdomIocKY˙ocKWmeetKWBaseKocKY˙ocKWmeetKWKW
117 31 38 116 mpbir2and KHLWHXdomIYdomIocKY˙ocKWmeetKWdomI
118 21 2 3 diameetN KHLWHocKX˙ocKWmeetKWdomIocKY˙ocKWmeetKWdomIIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW=IocKX˙ocKWmeetKWIocKY˙ocKWmeetKW
119 99 114 117 118 syl12anc KHLWHXdomIYdomIIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW=IocKX˙ocKWmeetKWIocKY˙ocKWmeetKW
120 1 21 12 2 43 3 44 diaocN KHLWHXdomIIocKX˙ocKWmeetKW=ocAKWIX
121 120 adantrr KHLWHXdomIYdomIIocKX˙ocKWmeetKW=ocAKWIX
122 1 21 12 2 43 3 44 diaocN KHLWHYdomIIocKY˙ocKWmeetKW=ocAKWIY
123 122 adantrl KHLWHXdomIYdomIIocKY˙ocKWmeetKW=ocAKWIY
124 121 123 ineq12d KHLWHXdomIYdomIIocKX˙ocKWmeetKWIocKY˙ocKWmeetKW=ocAKWIXocAKWIY
125 119 124 eqtrd KHLWHXdomIYdomIIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW=ocAKWIXocAKWIY
126 125 fveq2d KHLWHXdomIYdomIocAKWIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW=ocAKWocAKWIXocAKWIY
127 109 126 eqtr4d KHLWHXdomIYdomIIXJIY=ocAKWIocKX˙ocKWmeetKWmeetKocKY˙ocKWmeetKW
128 46 98 127 3eqtr4d KHLWHXdomIYdomIIX˙Y=IXJIY