Metamath Proof Explorer


Theorem dvferm1lem

Description: Lemma for dvferm . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvferm.a φF:X
dvferm.b φX
dvferm.u φUAB
dvferm.s φABX
dvferm.d φUdomF
dvferm1.r φyUBFyFU
dvferm1.z φ0<FU
dvferm1.t φT+
dvferm1.l φzXUzUzU<TFzFUzUFU<FU
dvferm1.x S=U+ifBU+TBU+T2
Assertion dvferm1lem ¬φ

Proof

Step Hyp Ref Expression
1 dvferm.a φF:X
2 dvferm.b φX
3 dvferm.u φUAB
4 dvferm.s φABX
5 dvferm.d φUdomF
6 dvferm1.r φyUBFyFU
7 dvferm1.z φ0<FU
8 dvferm1.t φT+
9 dvferm1.l φzXUzUzU<TFzFUzUFU<FU
10 dvferm1.x S=U+ifBU+TBU+T2
11 dvfre F:XXF:domF
12 1 2 11 syl2anc φF:domF
13 12 5 ffvelcdmd φFU
14 13 recnd φFU
15 14 subidd φFUFU=0
16 ioossre AB
17 16 3 sselid φU
18 eliooord UABA<UU<B
19 3 18 syl φA<UU<B
20 19 simprd φU<B
21 17 8 ltaddrpd φU<U+T
22 breq2 B=ifBU+TBU+TU<BU<ifBU+TBU+T
23 breq2 U+T=ifBU+TBU+TU<U+TU<ifBU+TBU+T
24 22 23 ifboth U<BU<U+TU<ifBU+TBU+T
25 20 21 24 syl2anc φU<ifBU+TBU+T
26 ne0i UABAB
27 ndmioo ¬A*B*AB=
28 27 necon1ai ABA*B*
29 3 26 28 3syl φA*B*
30 29 simprd φB*
31 8 rpred φT
32 17 31 readdcld φU+T
33 32 rexrd φU+T*
34 30 33 ifcld φifBU+TBU+T*
35 mnfxr −∞*
36 35 a1i φ−∞*
37 17 rexrd φU*
38 17 mnfltd φ−∞<U
39 36 37 30 38 20 xrlttrd φ−∞<B
40 32 mnfltd φ−∞<U+T
41 breq2 B=ifBU+TBU+T−∞<B−∞<ifBU+TBU+T
42 breq2 U+T=ifBU+TBU+T−∞<U+T−∞<ifBU+TBU+T
43 41 42 ifboth −∞<B−∞<U+T−∞<ifBU+TBU+T
44 39 40 43 syl2anc φ−∞<ifBU+TBU+T
45 xrmin2 B*U+T*ifBU+TBU+TU+T
46 30 33 45 syl2anc φifBU+TBU+TU+T
47 xrre ifBU+TBU+T*U+T−∞<ifBU+TBU+TifBU+TBU+TU+TifBU+TBU+T
48 34 32 44 46 47 syl22anc φifBU+TBU+T
49 avglt1 UifBU+TBU+TU<ifBU+TBU+TU<U+ifBU+TBU+T2
50 17 48 49 syl2anc φU<ifBU+TBU+TU<U+ifBU+TBU+T2
51 25 50 mpbid φU<U+ifBU+TBU+T2
52 51 10 breqtrrdi φU<S
53 17 52 gtned φSU
54 17 48 readdcld φU+ifBU+TBU+T
55 54 rehalfcld φU+ifBU+TBU+T2
56 10 55 eqeltrid φS
57 17 56 52 ltled φUS
58 17 56 57 abssubge0d φSU=SU
59 avglt2 UifBU+TBU+TU<ifBU+TBU+TU+ifBU+TBU+T2<ifBU+TBU+T
60 17 48 59 syl2anc φU<ifBU+TBU+TU+ifBU+TBU+T2<ifBU+TBU+T
61 25 60 mpbid φU+ifBU+TBU+T2<ifBU+TBU+T
62 10 61 eqbrtrid φS<ifBU+TBU+T
63 56 48 32 62 46 ltletrd φS<U+T
64 56 17 31 ltsubadd2d φSU<TS<U+T
65 63 64 mpbird φSU<T
66 58 65 eqbrtrd φSU<T
67 neeq1 z=SzUSU
68 fvoveq1 z=SzU=SU
69 68 breq1d z=SzU<TSU<T
70 67 69 anbi12d z=SzUzU<TSUSU<T
71 fveq2 z=SFz=FS
72 71 oveq1d z=SFzFU=FSFU
73 oveq1 z=SzU=SU
74 72 73 oveq12d z=SFzFUzU=FSFUSU
75 74 fvoveq1d z=SFzFUzUFU=FSFUSUFU
76 75 breq1d z=SFzFUzUFU<FUFSFUSUFU<FU
77 70 76 imbi12d z=SzUzU<TFzFUzUFU<FUSUSU<TFSFUSUFU<FU
78 29 simpld φA*
79 19 simpld φA<U
80 78 37 79 xrltled φAU
81 iooss1 A*AUUBAB
82 78 80 81 syl2anc φUBAB
83 82 4 sstrd φUBX
84 56 rexrd φS*
85 xrmin1 B*U+T*ifBU+TBU+TB
86 30 33 85 syl2anc φifBU+TBU+TB
87 84 34 30 62 86 xrltletrd φS<B
88 elioo2 U*B*SUBSU<SS<B
89 37 30 88 syl2anc φSUBSU<SS<B
90 56 52 87 89 mpbir3and φSUB
91 83 90 sseldd φSX
92 eldifsn SXUSXSU
93 91 53 92 sylanbrc φSXU
94 77 9 93 rspcdva φSUSU<TFSFUSUFU<FU
95 53 66 94 mp2and φFSFUSUFU<FU
96 1 91 ffvelcdmd φFS
97 4 3 sseldd φUX
98 1 97 ffvelcdmd φFU
99 96 98 resubcld φFSFU
100 56 17 resubcld φSU
101 17 56 posdifd φU<S0<SU
102 52 101 mpbid φ0<SU
103 100 102 elrpd φSU+
104 99 103 rerpdivcld φFSFUSU
105 104 13 13 absdifltd φFSFUSUFU<FUFUFU<FSFUSUFSFUSU<FU+FU
106 95 105 mpbid φFUFU<FSFUSUFSFUSU<FU+FU
107 106 simpld φFUFU<FSFUSU
108 15 107 eqbrtrrd φ0<FSFUSU
109 gt0div FSFUSU0<SU0<FSFU0<FSFUSU
110 99 100 102 109 syl3anc φ0<FSFU0<FSFUSU
111 108 110 mpbird φ0<FSFU
112 98 96 posdifd φFU<FS0<FSFU
113 111 112 mpbird φFU<FS
114 fveq2 y=SFy=FS
115 114 breq1d y=SFyFUFSFU
116 115 6 90 rspcdva φFSFU
117 96 98 116 lensymd φ¬FU<FS
118 113 117 pm2.65i ¬φ