Metamath Proof Explorer


Theorem dvmptfsum

Description: Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Hypotheses dvmptfsum.j J=K𝑡S
dvmptfsum.k K=TopOpenfld
dvmptfsum.s φS
dvmptfsum.x φXJ
dvmptfsum.i φIFin
dvmptfsum.a φiIxXA
dvmptfsum.b φiIxXB
dvmptfsum.d φiIdxXAdSx=xXB
Assertion dvmptfsum φdxXiIAdSx=xXiIB

Proof

Step Hyp Ref Expression
1 dvmptfsum.j J=K𝑡S
2 dvmptfsum.k K=TopOpenfld
3 dvmptfsum.s φS
4 dvmptfsum.x φXJ
5 dvmptfsum.i φIFin
6 dvmptfsum.a φiIxXA
7 dvmptfsum.b φiIxXB
8 dvmptfsum.d φiIdxXAdSx=xXB
9 ssid II
10 sseq1 a=aII
11 sumeq1 a=iaA=iA
12 11 mpteq2dv a=xXiaA=xXiA
13 12 oveq2d a=dxXiaAdSx=dxXiAdSx
14 sumeq1 a=iaB=iB
15 14 mpteq2dv a=xXiaB=xXiB
16 13 15 eqeq12d a=dxXiaAdSx=xXiaBdxXiAdSx=xXiB
17 10 16 imbi12d a=aIdxXiaAdSx=xXiaBIdxXiAdSx=xXiB
18 17 imbi2d a=φaIdxXiaAdSx=xXiaBφIdxXiAdSx=xXiB
19 sseq1 a=baIbI
20 sumeq1 a=biaA=ibA
21 20 mpteq2dv a=bxXiaA=xXibA
22 21 oveq2d a=bdxXiaAdSx=dxXibAdSx
23 sumeq1 a=biaB=ibB
24 23 mpteq2dv a=bxXiaB=xXibB
25 22 24 eqeq12d a=bdxXiaAdSx=xXiaBdxXibAdSx=xXibB
26 19 25 imbi12d a=baIdxXiaAdSx=xXiaBbIdxXibAdSx=xXibB
27 26 imbi2d a=bφaIdxXiaAdSx=xXiaBφbIdxXibAdSx=xXibB
28 sseq1 a=bcaIbcI
29 sumeq1 a=bciaA=ibcA
30 29 mpteq2dv a=bcxXiaA=xXibcA
31 30 oveq2d a=bcdxXiaAdSx=dxXibcAdSx
32 sumeq1 a=bciaB=ibcB
33 32 mpteq2dv a=bcxXiaB=xXibcB
34 31 33 eqeq12d a=bcdxXiaAdSx=xXiaBdxXibcAdSx=xXibcB
35 28 34 imbi12d a=bcaIdxXiaAdSx=xXiaBbcIdxXibcAdSx=xXibcB
36 35 imbi2d a=bcφaIdxXiaAdSx=xXiaBφbcIdxXibcAdSx=xXibcB
37 sseq1 a=IaIII
38 sumeq1 a=IiaA=iIA
39 38 mpteq2dv a=IxXiaA=xXiIA
40 39 oveq2d a=IdxXiaAdSx=dxXiIAdSx
41 sumeq1 a=IiaB=iIB
42 41 mpteq2dv a=IxXiaB=xXiIB
43 40 42 eqeq12d a=IdxXiaAdSx=xXiaBdxXiIAdSx=xXiIB
44 37 43 imbi12d a=IaIdxXiaAdSx=xXiaBIIdxXiIAdSx=xXiIB
45 44 imbi2d a=IφaIdxXiaAdSx=xXiaBφIIdxXiIAdSx=xXiIB
46 0cnd φxS0
47 0cnd φ0
48 3 47 dvmptc φdxS0dSx=xS0
49 2 cnfldtopon KTopOn
50 recnprss SS
51 3 50 syl φS
52 resttopon KTopOnSK𝑡STopOnS
53 49 51 52 sylancr φK𝑡STopOnS
54 1 53 eqeltrid φJTopOnS
55 toponss JTopOnSXJXS
56 54 4 55 syl2anc φXS
57 3 46 46 48 56 1 2 4 dvmptres φdxX0dSx=xX0
58 sum0 iA=0
59 58 mpteq2i xXiA=xX0
60 59 oveq2i dxXiAdSx=dxX0dSx
61 sum0 iB=0
62 61 mpteq2i xXiB=xX0
63 57 60 62 3eqtr4g φdxXiAdSx=xXiB
64 63 a1d φIdxXiAdSx=xXiB
65 ssun1 bbc
66 sstr bbcbcIbI
67 65 66 mpan bcIbI
68 67 imim1i bIdxXibAdSx=xXibBbcIdxXibAdSx=xXibB
69 simpll φ¬cbbcIdxXibAdSx=xXibBφ
70 69 3 syl φ¬cbbcIdxXibAdSx=xXibBS
71 5 ad3antrrr φ¬cbbcIaXIFin
72 67 ad2antlr φ¬cbbcIaXbI
73 71 72 ssfid φ¬cbbcIaXbFin
74 simp-4l φ¬cbbcIaXibφ
75 72 sselda φ¬cbbcIaXibiI
76 simplr φ¬cbbcIaXibaX
77 nfv xφiIaX
78 nfcsb1v _xa/xA
79 78 nfel1 xa/xA
80 77 79 nfim xφiIaXa/xA
81 eleq1w x=axXaX
82 81 3anbi3d x=aφiIxXφiIaX
83 csbeq1a x=aA=a/xA
84 83 eleq1d x=aAa/xA
85 82 84 imbi12d x=aφiIxXAφiIaXa/xA
86 80 85 6 chvarfv φiIaXa/xA
87 74 75 76 86 syl3anc φ¬cbbcIaXiba/xA
88 73 87 fsumcl φ¬cbbcIaXiba/xA
89 88 adantlrr φ¬cbbcIdxXibAdSx=xXibBaXiba/xA
90 sumex iba/xBV
91 90 a1i φ¬cbbcIdxXibAdSx=xXibBaXiba/xBV
92 nfcv _aibA
93 nfcv _xb
94 93 78 nfsum _xiba/xA
95 83 sumeq2sdv x=aibA=iba/xA
96 92 94 95 cbvmpt xXibA=aXiba/xA
97 96 oveq2i dxXibAdSx=daXiba/xAdSa
98 nfcv _aibB
99 nfcsb1v _xa/xB
100 93 99 nfsum _xiba/xB
101 csbeq1a x=aB=a/xB
102 101 sumeq2sdv x=aibB=iba/xB
103 98 100 102 cbvmpt xXibB=aXiba/xB
104 97 103 eqeq12i dxXibAdSx=xXibBdaXiba/xAdSa=aXiba/xB
105 104 biimpi dxXibAdSx=xXibBdaXiba/xAdSa=aXiba/xB
106 105 ad2antll φ¬cbbcIdxXibAdSx=xXibBdaXiba/xAdSa=aXiba/xB
107 simplll φ¬cbbcIaXφ
108 ssun2 cbc
109 sstr cbcbcIcI
110 108 109 mpan bcIcI
111 vex cV
112 111 snss cIcI
113 110 112 sylibr bcIcI
114 113 ad2antlr φ¬cbbcIaXcI
115 simpr φ¬cbbcIaXaX
116 6 3expb φiIxXA
117 116 ancom2s φxXiIA
118 117 ralrimivva φxXiIA
119 nfcsb1v _ic/ia/xA
120 119 nfel1 ic/ia/xA
121 csbeq1a i=ca/xA=c/ia/xA
122 121 eleq1d i=ca/xAc/ia/xA
123 79 120 84 122 rspc2 aXcIxXiIAc/ia/xA
124 123 ancoms cIaXxXiIAc/ia/xA
125 118 124 mpan9 φcIaXc/ia/xA
126 107 114 115 125 syl12anc φ¬cbbcIaXc/ia/xA
127 126 adantlrr φ¬cbbcIdxXibAdSx=xXibBaXc/ia/xA
128 7 3expb φiIxXB
129 128 ancom2s φxXiIB
130 129 ralrimivva φxXiIB
131 99 nfel1 xa/xB
132 nfcsb1v _ic/ia/xB
133 132 nfel1 ic/ia/xB
134 101 eleq1d x=aBa/xB
135 csbeq1a i=ca/xB=c/ia/xB
136 135 eleq1d i=ca/xBc/ia/xB
137 131 133 134 136 rspc2 aXcIxXiIBc/ia/xB
138 137 ancoms cIaXxXiIBc/ia/xB
139 130 138 mpan9 φcIaXc/ia/xB
140 107 114 115 139 syl12anc φ¬cbbcIaXc/ia/xB
141 140 adantlrr φ¬cbbcIdxXibAdSx=xXibBaXc/ia/xB
142 113 ad2antrl φ¬cbbcIdxXibAdSx=xXibBcI
143 nfv iφcI
144 nfcv _iS
145 nfcv _iD
146 nfcv _iX
147 nfcsb1v _ic/iA
148 146 147 nfmpt _ixXc/iA
149 144 145 148 nfov _idxXc/iAdSx
150 nfcsb1v _ic/iB
151 146 150 nfmpt _ixXc/iB
152 149 151 nfeq idxXc/iAdSx=xXc/iB
153 143 152 nfim iφcIdxXc/iAdSx=xXc/iB
154 eleq1w i=ciIcI
155 154 anbi2d i=cφiIφcI
156 csbeq1a i=cA=c/iA
157 156 mpteq2dv i=cxXA=xXc/iA
158 157 oveq2d i=cdxXAdSx=dxXc/iAdSx
159 csbeq1a i=cB=c/iB
160 159 mpteq2dv i=cxXB=xXc/iB
161 158 160 eqeq12d i=cdxXAdSx=xXBdxXc/iAdSx=xXc/iB
162 155 161 imbi12d i=cφiIdxXAdSx=xXBφcIdxXc/iAdSx=xXc/iB
163 153 162 8 chvarfv φcIdxXc/iAdSx=xXc/iB
164 nfcv _ac/iA
165 nfcv _xc
166 165 78 nfcsbw _xc/ia/xA
167 83 csbeq2dv x=ac/iA=c/ia/xA
168 164 166 167 cbvmpt xXc/iA=aXc/ia/xA
169 168 oveq2i dxXc/iAdSx=daXc/ia/xAdSa
170 nfcv _ac/iB
171 165 99 nfcsbw _xc/ia/xB
172 101 csbeq2dv x=ac/iB=c/ia/xB
173 170 171 172 cbvmpt xXc/iB=aXc/ia/xB
174 163 169 173 3eqtr3g φcIdaXc/ia/xAdSa=aXc/ia/xB
175 69 142 174 syl2anc φ¬cbbcIdxXibAdSx=xXibBdaXc/ia/xAdSa=aXc/ia/xB
176 70 89 91 106 127 141 175 dvmptadd φ¬cbbcIdxXibAdSx=xXibBdaXiba/xA+c/ia/xAdSa=aXiba/xB+c/ia/xB
177 nfcv _aibcA
178 nfcv _xbc
179 178 78 nfsum _xibca/xA
180 83 sumeq2sdv x=aibcA=ibca/xA
181 177 179 180 cbvmpt xXibcA=aXibca/xA
182 simpllr φ¬cbbcIaX¬cb
183 disjsn bc=¬cb
184 182 183 sylibr φ¬cbbcIaXbc=
185 eqidd φ¬cbbcIaXbc=bc
186 simplr φ¬cbbcIaXbcI
187 71 186 ssfid φ¬cbbcIaXbcFin
188 simp-4l φ¬cbbcIaXibcφ
189 186 sselda φ¬cbbcIaXibciI
190 simplr φ¬cbbcIaXibcaX
191 188 189 190 86 syl3anc φ¬cbbcIaXibca/xA
192 184 185 187 191 fsumsplit φ¬cbbcIaXibca/xA=iba/xA+ica/xA
193 sumsns cVc/ia/xAica/xA=c/ia/xA
194 111 126 193 sylancr φ¬cbbcIaXica/xA=c/ia/xA
195 194 oveq2d φ¬cbbcIaXiba/xA+ica/xA=iba/xA+c/ia/xA
196 192 195 eqtrd φ¬cbbcIaXibca/xA=iba/xA+c/ia/xA
197 196 mpteq2dva φ¬cbbcIaXibca/xA=aXiba/xA+c/ia/xA
198 181 197 eqtrid φ¬cbbcIxXibcA=aXiba/xA+c/ia/xA
199 198 adantrr φ¬cbbcIdxXibAdSx=xXibBxXibcA=aXiba/xA+c/ia/xA
200 199 oveq2d φ¬cbbcIdxXibAdSx=xXibBdxXibcAdSx=daXiba/xA+c/ia/xAdSa
201 nfcv _aibcB
202 178 99 nfsum _xibca/xB
203 101 sumeq2sdv x=aibcB=ibca/xB
204 201 202 203 cbvmpt xXibcB=aXibca/xB
205 77 131 nfim xφiIaXa/xB
206 82 134 imbi12d x=aφiIxXBφiIaXa/xB
207 205 206 7 chvarfv φiIaXa/xB
208 188 189 190 207 syl3anc φ¬cbbcIaXibca/xB
209 184 185 187 208 fsumsplit φ¬cbbcIaXibca/xB=iba/xB+ica/xB
210 sumsns cVc/ia/xBica/xB=c/ia/xB
211 111 140 210 sylancr φ¬cbbcIaXica/xB=c/ia/xB
212 211 oveq2d φ¬cbbcIaXiba/xB+ica/xB=iba/xB+c/ia/xB
213 209 212 eqtrd φ¬cbbcIaXibca/xB=iba/xB+c/ia/xB
214 213 mpteq2dva φ¬cbbcIaXibca/xB=aXiba/xB+c/ia/xB
215 204 214 eqtrid φ¬cbbcIxXibcB=aXiba/xB+c/ia/xB
216 215 adantrr φ¬cbbcIdxXibAdSx=xXibBxXibcB=aXiba/xB+c/ia/xB
217 176 200 216 3eqtr4d φ¬cbbcIdxXibAdSx=xXibBdxXibcAdSx=xXibcB
218 217 exp32 φ¬cbbcIdxXibAdSx=xXibBdxXibcAdSx=xXibcB
219 218 a2d φ¬cbbcIdxXibAdSx=xXibBbcIdxXibcAdSx=xXibcB
220 68 219 syl5 φ¬cbbIdxXibAdSx=xXibBbcIdxXibcAdSx=xXibcB
221 220 expcom ¬cbφbIdxXibAdSx=xXibBbcIdxXibcAdSx=xXibcB
222 221 adantl bFin¬cbφbIdxXibAdSx=xXibBbcIdxXibcAdSx=xXibcB
223 222 a2d bFin¬cbφbIdxXibAdSx=xXibBφbcIdxXibcAdSx=xXibcB
224 18 27 36 45 64 223 findcard2s IFinφIIdxXiIAdSx=xXiIB
225 5 224 mpcom φIIdxXiIAdSx=xXiIB
226 9 225 mpi φdxXiIAdSx=xXiIB