| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptfsum.j |
|
| 2 |
|
dvmptfsum.k |
|
| 3 |
|
dvmptfsum.s |
|
| 4 |
|
dvmptfsum.x |
|
| 5 |
|
dvmptfsum.i |
|
| 6 |
|
dvmptfsum.a |
|
| 7 |
|
dvmptfsum.b |
|
| 8 |
|
dvmptfsum.d |
|
| 9 |
|
ssid |
|
| 10 |
|
sseq1 |
|
| 11 |
|
sumeq1 |
|
| 12 |
11
|
mpteq2dv |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
sumeq1 |
|
| 15 |
14
|
mpteq2dv |
|
| 16 |
13 15
|
eqeq12d |
|
| 17 |
10 16
|
imbi12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
sseq1 |
|
| 20 |
|
sumeq1 |
|
| 21 |
20
|
mpteq2dv |
|
| 22 |
21
|
oveq2d |
|
| 23 |
|
sumeq1 |
|
| 24 |
23
|
mpteq2dv |
|
| 25 |
22 24
|
eqeq12d |
|
| 26 |
19 25
|
imbi12d |
|
| 27 |
26
|
imbi2d |
|
| 28 |
|
sseq1 |
|
| 29 |
|
sumeq1 |
|
| 30 |
29
|
mpteq2dv |
|
| 31 |
30
|
oveq2d |
|
| 32 |
|
sumeq1 |
|
| 33 |
32
|
mpteq2dv |
|
| 34 |
31 33
|
eqeq12d |
|
| 35 |
28 34
|
imbi12d |
|
| 36 |
35
|
imbi2d |
|
| 37 |
|
sseq1 |
|
| 38 |
|
sumeq1 |
|
| 39 |
38
|
mpteq2dv |
|
| 40 |
39
|
oveq2d |
|
| 41 |
|
sumeq1 |
|
| 42 |
41
|
mpteq2dv |
|
| 43 |
40 42
|
eqeq12d |
|
| 44 |
37 43
|
imbi12d |
|
| 45 |
44
|
imbi2d |
|
| 46 |
|
0cnd |
|
| 47 |
|
0cnd |
|
| 48 |
3 47
|
dvmptc |
|
| 49 |
2
|
cnfldtopon |
|
| 50 |
|
recnprss |
|
| 51 |
3 50
|
syl |
|
| 52 |
|
resttopon |
|
| 53 |
49 51 52
|
sylancr |
|
| 54 |
1 53
|
eqeltrid |
|
| 55 |
|
toponss |
|
| 56 |
54 4 55
|
syl2anc |
|
| 57 |
3 46 46 48 56 1 2 4
|
dvmptres |
|
| 58 |
|
sum0 |
|
| 59 |
58
|
mpteq2i |
|
| 60 |
59
|
oveq2i |
|
| 61 |
|
sum0 |
|
| 62 |
61
|
mpteq2i |
|
| 63 |
57 60 62
|
3eqtr4g |
|
| 64 |
63
|
a1d |
|
| 65 |
|
ssun1 |
|
| 66 |
|
sstr |
|
| 67 |
65 66
|
mpan |
|
| 68 |
67
|
imim1i |
|
| 69 |
|
simpll |
|
| 70 |
69 3
|
syl |
|
| 71 |
5
|
ad3antrrr |
|
| 72 |
67
|
ad2antlr |
|
| 73 |
71 72
|
ssfid |
|
| 74 |
|
simp-4l |
|
| 75 |
72
|
sselda |
|
| 76 |
|
simplr |
|
| 77 |
|
nfv |
|
| 78 |
|
nfcsb1v |
|
| 79 |
78
|
nfel1 |
|
| 80 |
77 79
|
nfim |
|
| 81 |
|
eleq1w |
|
| 82 |
81
|
3anbi3d |
|
| 83 |
|
csbeq1a |
|
| 84 |
83
|
eleq1d |
|
| 85 |
82 84
|
imbi12d |
|
| 86 |
80 85 6
|
chvarfv |
|
| 87 |
74 75 76 86
|
syl3anc |
|
| 88 |
73 87
|
fsumcl |
|
| 89 |
88
|
adantlrr |
|
| 90 |
|
sumex |
|
| 91 |
90
|
a1i |
|
| 92 |
|
nfcv |
|
| 93 |
|
nfcv |
|
| 94 |
93 78
|
nfsum |
|
| 95 |
83
|
sumeq2sdv |
|
| 96 |
92 94 95
|
cbvmpt |
|
| 97 |
96
|
oveq2i |
|
| 98 |
|
nfcv |
|
| 99 |
|
nfcsb1v |
|
| 100 |
93 99
|
nfsum |
|
| 101 |
|
csbeq1a |
|
| 102 |
101
|
sumeq2sdv |
|
| 103 |
98 100 102
|
cbvmpt |
|
| 104 |
97 103
|
eqeq12i |
|
| 105 |
104
|
biimpi |
|
| 106 |
105
|
ad2antll |
|
| 107 |
|
simplll |
|
| 108 |
|
ssun2 |
|
| 109 |
|
sstr |
|
| 110 |
108 109
|
mpan |
|
| 111 |
|
vex |
|
| 112 |
111
|
snss |
|
| 113 |
110 112
|
sylibr |
|
| 114 |
113
|
ad2antlr |
|
| 115 |
|
simpr |
|
| 116 |
6
|
3expb |
|
| 117 |
116
|
ancom2s |
|
| 118 |
117
|
ralrimivva |
|
| 119 |
|
nfcsb1v |
|
| 120 |
119
|
nfel1 |
|
| 121 |
|
csbeq1a |
|
| 122 |
121
|
eleq1d |
|
| 123 |
79 120 84 122
|
rspc2 |
|
| 124 |
123
|
ancoms |
|
| 125 |
118 124
|
mpan9 |
|
| 126 |
107 114 115 125
|
syl12anc |
|
| 127 |
126
|
adantlrr |
|
| 128 |
7
|
3expb |
|
| 129 |
128
|
ancom2s |
|
| 130 |
129
|
ralrimivva |
|
| 131 |
99
|
nfel1 |
|
| 132 |
|
nfcsb1v |
|
| 133 |
132
|
nfel1 |
|
| 134 |
101
|
eleq1d |
|
| 135 |
|
csbeq1a |
|
| 136 |
135
|
eleq1d |
|
| 137 |
131 133 134 136
|
rspc2 |
|
| 138 |
137
|
ancoms |
|
| 139 |
130 138
|
mpan9 |
|
| 140 |
107 114 115 139
|
syl12anc |
|
| 141 |
140
|
adantlrr |
|
| 142 |
113
|
ad2antrl |
|
| 143 |
|
nfv |
|
| 144 |
|
nfcv |
|
| 145 |
|
nfcv |
|
| 146 |
|
nfcv |
|
| 147 |
|
nfcsb1v |
|
| 148 |
146 147
|
nfmpt |
|
| 149 |
144 145 148
|
nfov |
|
| 150 |
|
nfcsb1v |
|
| 151 |
146 150
|
nfmpt |
|
| 152 |
149 151
|
nfeq |
|
| 153 |
143 152
|
nfim |
|
| 154 |
|
eleq1w |
|
| 155 |
154
|
anbi2d |
|
| 156 |
|
csbeq1a |
|
| 157 |
156
|
mpteq2dv |
|
| 158 |
157
|
oveq2d |
|
| 159 |
|
csbeq1a |
|
| 160 |
159
|
mpteq2dv |
|
| 161 |
158 160
|
eqeq12d |
|
| 162 |
155 161
|
imbi12d |
|
| 163 |
153 162 8
|
chvarfv |
|
| 164 |
|
nfcv |
|
| 165 |
|
nfcv |
|
| 166 |
165 78
|
nfcsbw |
|
| 167 |
83
|
csbeq2dv |
|
| 168 |
164 166 167
|
cbvmpt |
|
| 169 |
168
|
oveq2i |
|
| 170 |
|
nfcv |
|
| 171 |
165 99
|
nfcsbw |
|
| 172 |
101
|
csbeq2dv |
|
| 173 |
170 171 172
|
cbvmpt |
|
| 174 |
163 169 173
|
3eqtr3g |
|
| 175 |
69 142 174
|
syl2anc |
|
| 176 |
70 89 91 106 127 141 175
|
dvmptadd |
|
| 177 |
|
nfcv |
|
| 178 |
|
nfcv |
|
| 179 |
178 78
|
nfsum |
|
| 180 |
83
|
sumeq2sdv |
|
| 181 |
177 179 180
|
cbvmpt |
|
| 182 |
|
simpllr |
|
| 183 |
|
disjsn |
|
| 184 |
182 183
|
sylibr |
|
| 185 |
|
eqidd |
|
| 186 |
|
simplr |
|
| 187 |
71 186
|
ssfid |
|
| 188 |
|
simp-4l |
|
| 189 |
186
|
sselda |
|
| 190 |
|
simplr |
|
| 191 |
188 189 190 86
|
syl3anc |
|
| 192 |
184 185 187 191
|
fsumsplit |
|
| 193 |
|
sumsns |
|
| 194 |
111 126 193
|
sylancr |
|
| 195 |
194
|
oveq2d |
|
| 196 |
192 195
|
eqtrd |
|
| 197 |
196
|
mpteq2dva |
|
| 198 |
181 197
|
eqtrid |
|
| 199 |
198
|
adantrr |
|
| 200 |
199
|
oveq2d |
|
| 201 |
|
nfcv |
|
| 202 |
178 99
|
nfsum |
|
| 203 |
101
|
sumeq2sdv |
|
| 204 |
201 202 203
|
cbvmpt |
|
| 205 |
77 131
|
nfim |
|
| 206 |
82 134
|
imbi12d |
|
| 207 |
205 206 7
|
chvarfv |
|
| 208 |
188 189 190 207
|
syl3anc |
|
| 209 |
184 185 187 208
|
fsumsplit |
|
| 210 |
|
sumsns |
|
| 211 |
111 140 210
|
sylancr |
|
| 212 |
211
|
oveq2d |
|
| 213 |
209 212
|
eqtrd |
|
| 214 |
213
|
mpteq2dva |
|
| 215 |
204 214
|
eqtrid |
|
| 216 |
215
|
adantrr |
|
| 217 |
176 200 216
|
3eqtr4d |
|
| 218 |
217
|
exp32 |
|
| 219 |
218
|
a2d |
|
| 220 |
68 219
|
syl5 |
|
| 221 |
220
|
expcom |
|
| 222 |
221
|
adantl |
|
| 223 |
222
|
a2d |
|
| 224 |
18 27 36 45 64 223
|
findcard2s |
|
| 225 |
5 224
|
mpcom |
|
| 226 |
9 225
|
mpi |
|