Metamath Proof Explorer


Theorem esplyfval3

Description: Alternate expression for the value of the K -th elementary symmetric polynomial. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses esplyfval3.d D = h 0 I | finSupp 0 h
esplyfval3.i φ I Fin
esplyfval3.r φ R Ring
esplyfval3.k φ K 0
esplyfval3.1 0 ˙ = 0 R
esplyfval3.2 1 ˙ = 1 R
Assertion esplyfval3 Could not format assertion : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyfval3.d D = h 0 I | finSupp 0 h
2 esplyfval3.i φ I Fin
3 esplyfval3.r φ R Ring
4 esplyfval3.k φ K 0
5 esplyfval3.1 0 ˙ = 0 R
6 esplyfval3.2 1 ˙ = 1 R
7 eqid ℤRHom R = ℤRHom R
8 7 zrhrhm R Ring ℤRHom R ring RingHom R
9 zringbas = Base ring
10 eqid Base R = Base R
11 9 10 rhmf ℤRHom R ring RingHom R ℤRHom R : Base R
12 3 8 11 3syl φ ℤRHom R : Base R
13 12 ffnd φ ℤRHom R Fn
14 ovex 0 I V
15 1 14 rabex2 D V
16 15 a1i φ K 0 I D V
17 2 adantr φ K 0 I I Fin
18 3 adantr φ K 0 I R Ring
19 4 adantr φ K 0 I K 0
20 1 17 18 19 esplylem φ K 0 I 𝟙 I c 𝒫 I | c = K D
21 indf D V 𝟙 I c 𝒫 I | c = K D 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
22 16 20 21 syl2anc φ K 0 I 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
23 0zd φ K 0 I 0
24 1zzd φ K 0 I 1
25 23 24 prssd φ K 0 I 0 1
26 22 25 fssd φ K 0 I 𝟙 D 𝟙 I c 𝒫 I | c = K : D
27 fnfco ℤRHom R Fn 𝟙 D 𝟙 I c 𝒫 I | c = K : D ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K Fn D
28 13 26 27 syl2an2r φ K 0 I ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K Fn D
29 1 17 18 19 esplyfval Could not format ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-
30 29 fneq1d Could not format ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( ( I eSymPoly R ) ` K ) Fn D <-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) Fn D ) ) : No typesetting found for |- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( ( I eSymPoly R ) ` K ) Fn D <-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) Fn D ) ) with typecode |-
31 28 30 mpbird Could not format ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) Fn D ) : No typesetting found for |- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) Fn D ) with typecode |-
32 dffn5 Could not format ( ( ( I eSymPoly R ) ` K ) Fn D <-> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) ) : No typesetting found for |- ( ( ( I eSymPoly R ) ` K ) Fn D <-> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) ) with typecode |-
33 31 32 sylib Could not format ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) ) : No typesetting found for |- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) ) with typecode |-
34 eqeq2 Could not format ( if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) <-> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) : No typesetting found for |- ( if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) <-> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) with typecode |-
35 eqeq2 Could not format ( .0. = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` f ) = .0. <-> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) : No typesetting found for |- ( .0. = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) -> ( ( ( ( I eSymPoly R ) ` K ) ` f ) = .0. <-> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) ) with typecode |-
36 17 adantr φ K 0 I f D I Fin
37 36 adantr φ K 0 I f D ran f 0 1 I Fin
38 18 ad2antrr φ K 0 I f D ran f 0 1 R Ring
39 simpllr φ K 0 I f D ran f 0 1 K 0 I
40 simplr φ K 0 I f D ran f 0 1 f D
41 simpr φ K 0 I f D ran f 0 1 ran f 0 1
42 1 37 38 39 40 5 6 41 esplyfv1 Could not format ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) ) : No typesetting found for |- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) ) with typecode |-
43 29 ad2antrr Could not format ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-
44 43 fveq1d Could not format ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` f ) ) : No typesetting found for |- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = ( ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ` f ) ) with typecode |-
45 26 ad2antrr φ K 0 I f D ¬ ran f 0 1 𝟙 D 𝟙 I c 𝒫 I | c = K : D
46 simplr φ K 0 I f D ¬ ran f 0 1 f D
47 45 46 fvco3d φ K 0 I f D ¬ ran f 0 1 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K f = ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K f
48 20 ad2antrr φ K 0 I f D ¬ ran f 0 1 𝟙 I c 𝒫 I | c = K D
49 simpr φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = f 𝟙 I d = f
50 36 ad3antrrr φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = f I Fin
51 ssrab2 c 𝒫 I | c = K 𝒫 I
52 51 a1i φ K 0 I f D f 𝟙 I c 𝒫 I | c = K c 𝒫 I | c = K 𝒫 I
53 52 sselda φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K d 𝒫 I
54 53 adantr φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = f d 𝒫 I
55 54 elpwid φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = f d I
56 indf I Fin d I 𝟙 I d : I 0 1
57 50 55 56 syl2anc φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = f 𝟙 I d : I 0 1
58 49 57 feq1dd φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = f f : I 0 1
59 indf1o I Fin 𝟙 I : 𝒫 I 1-1 onto 0 1 I
60 f1of 𝟙 I : 𝒫 I 1-1 onto 0 1 I 𝟙 I : 𝒫 I 0 1 I
61 36 59 60 3syl φ K 0 I f D 𝟙 I : 𝒫 I 0 1 I
62 61 ffnd φ K 0 I f D 𝟙 I Fn 𝒫 I
63 51 a1i φ K 0 I f D c 𝒫 I | c = K 𝒫 I
64 62 63 fvelimabd φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = f
65 64 biimpa φ K 0 I f D f 𝟙 I c 𝒫 I | c = K d c 𝒫 I | c = K 𝟙 I d = f
66 58 65 r19.29a φ K 0 I f D f 𝟙 I c 𝒫 I | c = K f : I 0 1
67 66 frnd φ K 0 I f D f 𝟙 I c 𝒫 I | c = K ran f 0 1
68 67 stoic1a φ K 0 I f D ¬ ran f 0 1 ¬ f 𝟙 I c 𝒫 I | c = K
69 46 68 eldifd φ K 0 I f D ¬ ran f 0 1 f D 𝟙 I c 𝒫 I | c = K
70 ind0 D V 𝟙 I c 𝒫 I | c = K D f D 𝟙 I c 𝒫 I | c = K 𝟙 D 𝟙 I c 𝒫 I | c = K f = 0
71 15 48 69 70 mp3an2i φ K 0 I f D ¬ ran f 0 1 𝟙 D 𝟙 I c 𝒫 I | c = K f = 0
72 71 fveq2d φ K 0 I f D ¬ ran f 0 1 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K f = ℤRHom R 0
73 7 5 zrh0 R Ring ℤRHom R 0 = 0 ˙
74 3 73 syl φ ℤRHom R 0 = 0 ˙
75 74 ad3antrrr φ K 0 I f D ¬ ran f 0 1 ℤRHom R 0 = 0 ˙
76 72 75 eqtrd φ K 0 I f D ¬ ran f 0 1 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K f = 0 ˙
77 44 47 76 3eqtrd Could not format ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = .0. ) : No typesetting found for |- ( ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) /\ -. ran f C_ { 0 , 1 } ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = .0. ) with typecode |-
78 34 35 42 77 ifbothda Could not format ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) : No typesetting found for |- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ran f C_ { 0 , 1 } , if ( ( # ` ( f supp 0 ) ) = K , .1. , .0. ) , .0. ) ) with typecode |-
79 ifan if ran f 0 1 f supp 0 = K 1 ˙ 0 ˙ = if ran f 0 1 if f supp 0 = K 1 ˙ 0 ˙ 0 ˙
80 78 79 eqtr4di Could not format ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) : No typesetting found for |- ( ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) /\ f e. D ) -> ( ( ( I eSymPoly R ) ` K ) ` f ) = if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) with typecode |-
81 80 mpteq2dva Could not format ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) : No typesetting found for |- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( f e. D |-> ( ( ( I eSymPoly R ) ` K ) ` f ) ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) with typecode |-
82 33 81 eqtrd Could not format ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) : No typesetting found for |- ( ( ph /\ K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) with typecode |-
83 eqid I mPoly R = I mPoly R
84 1 psrbasfsupp D = h 0 I | h -1 Fin
85 eqid 0 I mPoly R = 0 I mPoly R
86 3 ringgrpd φ R Grp
87 83 84 5 85 2 86 mpl0 φ 0 I mPoly R = D × 0 ˙
88 87 adantr φ ¬ K 0 I 0 I mPoly R = D × 0 ˙
89 2 adantr φ ¬ K 0 I I Fin
90 3 adantr φ ¬ K 0 I R Ring
91 4 adantr φ ¬ K 0 I K 0
92 simpr φ ¬ K 0 I ¬ K 0 I
93 91 92 eldifd φ ¬ K 0 I K 0 0 I
94 1 89 90 93 85 esplyfval2 Could not format ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( 0g ` ( I mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( 0g ` ( I mPoly R ) ) ) with typecode |-
95 breq1 h = f finSupp 0 h finSupp 0 f
96 1 eleq2i f D f h 0 I | finSupp 0 h
97 96 biimpi f D f h 0 I | finSupp 0 h
98 97 adantl φ f D f h 0 I | finSupp 0 h
99 95 98 elrabrd φ f D finSupp 0 f
100 99 fsuppimpd φ f D f supp 0 Fin
101 hashcl f supp 0 Fin f supp 0 0
102 100 101 syl φ f D f supp 0 0
103 102 nn0red φ f D f supp 0
104 103 adantlr φ ¬ K 0 I f D f supp 0
105 hashcl I Fin I 0
106 2 105 syl φ I 0
107 106 nn0red φ I
108 107 ad2antrr φ ¬ K 0 I f D I
109 4 nn0red φ K
110 109 ad2antrr φ ¬ K 0 I f D K
111 suppssdm f supp 0 dom f
112 2 adantr φ f D I Fin
113 nn0ex 0 V
114 113 a1i φ f D 0 V
115 1 ssrab3 D 0 I
116 115 a1i φ D 0 I
117 116 sselda φ f D f 0 I
118 112 114 117 elmaprd φ f D f : I 0
119 111 118 fssdm φ f D f supp 0 I
120 hashss I Fin f supp 0 I f supp 0 I
121 2 119 120 syl2an2r φ f D f supp 0 I
122 121 adantlr φ ¬ K 0 I f D f supp 0 I
123 106 nn0zd φ I
124 123 ad2antrr φ ¬ K 0 I f D I
125 nn0diffz0 I 0 0 0 I = I + 1
126 89 105 125 3syl φ ¬ K 0 I 0 0 I = I + 1
127 93 126 eleqtrd φ ¬ K 0 I K I + 1
128 127 adantr φ ¬ K 0 I f D K I + 1
129 eluzp1l I K I + 1 I < K
130 124 128 129 syl2anc φ ¬ K 0 I f D I < K
131 104 108 110 122 130 lelttrd φ ¬ K 0 I f D f supp 0 < K
132 104 131 ltned φ ¬ K 0 I f D f supp 0 K
133 132 neneqd φ ¬ K 0 I f D ¬ f supp 0 = K
134 133 intnand φ ¬ K 0 I f D ¬ ran f 0 1 f supp 0 = K
135 134 iffalsed φ ¬ K 0 I f D if ran f 0 1 f supp 0 = K 1 ˙ 0 ˙ = 0 ˙
136 135 mpteq2dva φ ¬ K 0 I f D if ran f 0 1 f supp 0 = K 1 ˙ 0 ˙ = f D 0 ˙
137 fconstmpt D × 0 ˙ = f D 0 ˙
138 136 137 eqtr4di φ ¬ K 0 I f D if ran f 0 1 f supp 0 = K 1 ˙ 0 ˙ = D × 0 ˙
139 88 94 138 3eqtr4d Could not format ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) : No typesetting found for |- ( ( ph /\ -. K e. ( 0 ... ( # ` I ) ) ) -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) with typecode |-
140 82 139 pm2.61dan Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( f e. D |-> if ( ( ran f C_ { 0 , 1 } /\ ( # ` ( f supp 0 ) ) = K ) , .1. , .0. ) ) ) with typecode |-