Metamath Proof Explorer


Theorem etransclem38

Description: P divides the I -th derivative of F applied to J . if it is not the case that I = P - 1 and J = 0 . This is case 1 and the second part of case 2 proven in in Juillerat p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem38.p φP
etransclem38.m φM0
etransclem38.f F=xxP1j=1MxjP
etransclem38.i φI0
etransclem38.j φJ0M
etransclem38.ij φ¬I=P1J=0
etransclem38.c C=n0c0n0M|j=0Mcj=n
Assertion etransclem38 φPDnFIJP1!

Proof

Step Hyp Ref Expression
1 etransclem38.p φP
2 etransclem38.m φM0
3 etransclem38.f F=xxP1j=1MxjP
4 etransclem38.i φI0
5 etransclem38.j φJ0M
6 etransclem38.ij φ¬I=P1J=0
7 etransclem38.c C=n0c0n0M|j=0Mcj=n
8 7 4 etransclem16 φCIFin
9 1 nnzd φP
10 1 adantr φcCIP
11 2 adantr φcCIM0
12 4 adantr φcCII0
13 etransclem11 n0c0n0M|j=0Mcj=n=m0e0m0M|k=0Mek=m
14 etransclem11 m0e0m0M|k=0Mek=m=n0d0n0M|j=0Mdj=n
15 7 13 14 3eqtri C=n0d0n0M|j=0Mdj=n
16 simpr φcCIcCI
17 5 adantr φcCIJ0M
18 eqid I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj=I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
19 10 11 12 15 16 17 18 etransclem28 φcCIP1!I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
20 nnm1nn0 PP10
21 1 20 syl φP10
22 21 faccld φP1!
23 22 nnzd φP1!
24 23 adantr φcCIP1!
25 22 nnne0d φP1!0
26 25 adantr φcCIP1!0
27 5 elfzelzd φJ
28 27 adantr φcCIJ
29 10 11 12 28 15 16 etransclem26 φcCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
30 dvdsval2 P1!P1!0I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
31 24 26 29 30 syl3anc φcCIP1!I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
32 19 31 mpbid φcCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
33 pm3.22 J=0I=P1I=P1J=0
34 33 adantll φcCIJ=0I=P1I=P1J=0
35 6 ad3antrrr φcCIJ=0I=P1¬I=P1J=0
36 34 35 pm2.65da φcCIJ=0¬I=P1
37 36 neqned φcCIJ=0IP1
38 1 ad3antrrr φcCIJ=0IP1P
39 2 ad3antrrr φcCIJ=0IP1M0
40 4 ad3antrrr φcCIJ=0IP1I0
41 simpr φcCIJ=0IP1IP1
42 simplr φcCIJ=0IP1J=0
43 16 ad2antrr φcCIJ=0IP1cCI
44 38 39 40 41 42 15 43 etransclem24 φcCIJ=0IP1PI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
45 37 44 mpdan φcCIJ=0PI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
46 1 ad2antrr φcCI¬J=0P
47 2 ad2antrr φcCI¬J=0M0
48 4 ad2antrr φcCI¬J=0I0
49 7 4 etransclem12 φCI=c0I0M|j=0Mcj=I
50 49 adantr φcCICI=c0I0M|j=0Mcj=I
51 16 50 eleqtrd φcCIcc0I0M|j=0Mcj=I
52 rabid cc0I0M|j=0Mcj=Ic0I0Mj=0Mcj=I
53 51 52 sylib φcCIc0I0Mj=0Mcj=I
54 53 simpld φcCIc0I0M
55 elmapi c0I0Mc:0M0I
56 54 55 syl φcCIc:0M0I
57 56 adantr φcCI¬J=0c:0M0I
58 53 simprd φcCIj=0Mcj=I
59 58 adantr φcCI¬J=0j=0Mcj=I
60 1zzd φ¬J=01
61 2 nn0zd φM
62 61 adantr φ¬J=0M
63 27 adantr φ¬J=0J
64 elfznn0 J0MJ0
65 5 64 syl φJ0
66 neqne ¬J=0J0
67 65 66 anim12i φ¬J=0J0J0
68 elnnne0 JJ0J0
69 67 68 sylibr φ¬J=0J
70 69 nnge1d φ¬J=01J
71 elfzle2 J0MJM
72 5 71 syl φJM
73 72 adantr φ¬J=0JM
74 60 62 63 70 73 elfzd φ¬J=0J1M
75 74 adantlr φcCI¬J=0J1M
76 46 47 48 57 59 18 75 etransclem25 φcCI¬J=0P!I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
77 1 nncnd φP
78 1cnd φ1
79 77 78 npcand φP-1+1=P
80 79 eqcomd φP=P-1+1
81 80 fveq2d φP!=P-1+1!
82 facp1 P10P-1+1!=P1!P-1+1
83 21 82 syl φP-1+1!=P1!P-1+1
84 79 oveq2d φP1!P-1+1=P1!P
85 22 nncnd φP1!
86 85 77 mulcomd φP1!P=PP1!
87 84 86 eqtrd φP1!P-1+1=PP1!
88 81 83 87 3eqtrrd φPP1!=P!
89 88 ad2antrr φcCI¬J=0PP1!=P!
90 29 zcnd φcCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
91 85 adantr φcCIP1!
92 90 91 26 divcan1d φcCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!P1!=I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
93 92 adantr φcCI¬J=0I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!P1!=I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
94 76 89 93 3brtr4d φcCI¬J=0PP1!I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!P1!
95 9 ad2antrr φcCI¬J=0P
96 32 adantr φcCI¬J=0I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
97 23 ad2antrr φcCI¬J=0P1!
98 25 ad2antrr φcCI¬J=0P1!0
99 dvdsmulcr PI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!P1!P1!0PP1!I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!P1!PI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
100 95 96 97 98 99 syl112anc φcCI¬J=0PP1!I!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!P1!PI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
101 94 100 mpbid φcCI¬J=0PI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
102 45 101 pm2.61dan φcCIPI!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
103 8 9 32 102 fsumdvds φPcCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
104 reelprrecn
105 104 a1i φ
106 reopn topGenran.
107 eqid TopOpenfld=TopOpenfld
108 107 tgioo2 topGenran.=TopOpenfld𝑡
109 106 108 eleqtri TopOpenfld𝑡
110 109 a1i φTopOpenfld𝑡
111 etransclem5 k0Myykifk=0P1P=j0Mxxjifj=0P1P
112 fzssre 0M
113 112 5 sselid φJ
114 105 110 1 2 3 4 111 7 113 etransclem31 φDnFIJ=cCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
115 114 oveq1d φDnFIJP1!=cCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
116 8 85 90 25 fsumdivc φcCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!=cCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
117 115 116 eqtrd φDnFIJP1!=cCII!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcjP1!
118 103 117 breqtrrd φPDnFIJP1!