Metamath Proof Explorer


Theorem eulerpartlemt

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
eulerpart.r R=f|f-1Fin
eulerpart.t T=f0|f-1J
Assertion eulerpartlemt 0JR=ranmTRmJ

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 eulerpart.r R=f|f-1Fin
9 eulerpart.t T=f0|f-1J
10 elmapi o0Jo:J0
11 10 adantr o0JoRo:J0
12 c0ex 0V
13 12 fconst J×0:J0
14 13 a1i o0JoRJ×0:J0
15 disjdif JJ=
16 15 a1i o0JoRJJ=
17 fun o:J0J×0:J0JJ=oJ×0:JJ00
18 11 14 16 17 syl21anc o0JoRoJ×0:JJ00
19 ssrab2 z|¬2z
20 4 19 eqsstri J
21 undif JJJ=
22 20 21 mpbi JJ=
23 0nn0 00
24 snssi 0000
25 23 24 ax-mp 00
26 ssequn2 0000=0
27 25 26 mpbi 00=0
28 22 27 feq23i oJ×0:JJ00oJ×0:0
29 18 28 sylib o0JoRoJ×0:0
30 nn0ex 0V
31 nnex V
32 30 31 elmap oJ×00oJ×0:0
33 29 32 sylibr o0JoRoJ×00
34 cnvun oJ×0-1=o-1J×0-1
35 34 imaeq1i oJ×0-1=o-1J×0-1
36 imaundir o-1J×0-1=o-1J×0-1
37 35 36 eqtri oJ×0-1=o-1J×0-1
38 vex oV
39 cnveq f=of-1=o-1
40 39 imaeq1d f=of-1=o-1
41 40 eleq1d f=of-1Fino-1Fin
42 38 41 8 elab2 oRo-1Fin
43 42 biimpi oRo-1Fin
44 43 adantl o0JoRo-1Fin
45 cnvxp J×0-1=0×J
46 45 dmeqi domJ×0-1=dom0×J
47 2nn 2
48 2z 2
49 iddvds 222
50 48 49 ax-mp 22
51 breq2 z=22z22
52 51 notbid z=2¬2z¬22
53 52 4 elrab2 2J2¬22
54 53 simprbi 2J¬22
55 50 54 mt2 ¬2J
56 eldif 2J2¬2J
57 47 55 56 mpbir2an 2J
58 ne0i 2JJ
59 dmxp Jdom0×J=0
60 57 58 59 mp2b dom0×J=0
61 46 60 eqtri domJ×0-1=0
62 61 ineq1i domJ×0-1=0
63 incom 0=0
64 0nnn ¬0
65 disjsn 0=¬0
66 64 65 mpbir 0=
67 62 63 66 3eqtr2i domJ×0-1=
68 imadisj J×0-1=domJ×0-1=
69 67 68 mpbir J×0-1=
70 0fin Fin
71 69 70 eqeltri J×0-1Fin
72 unfi o-1FinJ×0-1Fino-1J×0-1Fin
73 44 71 72 sylancl o0JoRo-1J×0-1Fin
74 37 73 eqeltrid o0JoRoJ×0-1Fin
75 cnvimass o-1domo
76 75 11 fssdm o0JoRo-1J
77 0ss J
78 69 77 eqsstri J×0-1J
79 78 a1i o0JoRJ×0-1J
80 76 79 unssd o0JoRo-1J×0-1J
81 37 80 eqsstrid o0JoRoJ×0-1J
82 1 2 3 4 5 6 7 8 9 eulerpartlemt0 oJ×0TRoJ×00oJ×0-1FinoJ×0-1J
83 33 74 81 82 syl3anbrc o0JoRoJ×0TR
84 resundir oJ×0J=oJJ×0J
85 ffn o:J0oFnJ
86 fnresdm oFnJoJ=o
87 disjdifr JJ=
88 fnconstg 00J×0FnJ
89 fnresdisj J×0FnJJJ=J×0J=
90 23 88 89 mp2b JJ=J×0J=
91 87 90 mpbi J×0J=
92 91 a1i oFnJJ×0J=
93 86 92 uneq12d oFnJoJJ×0J=o
94 11 85 93 3syl o0JoRoJJ×0J=o
95 un0 o=o
96 94 95 eqtrdi o0JoRoJJ×0J=o
97 84 96 eqtr2id o0JoRo=oJ×0J
98 reseq1 m=oJ×0mJ=oJ×0J
99 98 rspceeqv oJ×0TRo=oJ×0JmTRo=mJ
100 83 97 99 syl2anc o0JoRmTRo=mJ
101 simpr mTRo=mJo=mJ
102 simpl mTRo=mJmTR
103 1 2 3 4 5 6 7 8 9 eulerpartlemt0 mTRm0m-1Finm-1J
104 102 103 sylib mTRo=mJm0m-1Finm-1J
105 104 simp1d mTRo=mJm0
106 30 31 elmap m0m:0
107 105 106 sylib mTRo=mJm:0
108 fssres m:0JmJ:J0
109 107 20 108 sylancl mTRo=mJmJ:J0
110 4 31 rabex2 JV
111 30 110 elmap mJ0JmJ:J0
112 109 111 sylibr mTRo=mJmJ0J
113 101 112 eqeltrd mTRo=mJo0J
114 ffun m:0Funm
115 respreima FunmmJ-1=m-1J
116 107 114 115 3syl mTRo=mJmJ-1=m-1J
117 104 simp2d mTRo=mJm-1Fin
118 infi m-1Finm-1JFin
119 117 118 syl mTRo=mJm-1JFin
120 116 119 eqeltrd mTRo=mJmJ-1Fin
121 vex mV
122 121 resex mJV
123 cnveq f=mJf-1=mJ-1
124 123 imaeq1d f=mJf-1=mJ-1
125 124 eleq1d f=mJf-1FinmJ-1Fin
126 122 125 8 elab2 mJRmJ-1Fin
127 120 126 sylibr mTRo=mJmJR
128 101 127 eqeltrd mTRo=mJoR
129 113 128 jca mTRo=mJo0JoR
130 129 rexlimiva mTRo=mJo0JoR
131 100 130 impbii o0JoRmTRo=mJ
132 131 abbii o|o0JoR=o|mTRo=mJ
133 df-in 0JR=o|o0JoR
134 eqid mTRmJ=mTRmJ
135 134 rnmpt ranmTRmJ=o|mTRo=mJ
136 132 133 135 3eqtr4i 0JR=ranmTRmJ