| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fislw.1 |
|
| 2 |
|
simpr |
|
| 3 |
|
slwsubg |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
simpl2 |
|
| 6 |
1 5 2
|
slwhash |
|
| 7 |
4 6
|
jca |
|
| 8 |
|
simpl3 |
|
| 9 |
|
simprl |
|
| 10 |
|
simpl2 |
|
| 11 |
10
|
adantr |
|
| 12 |
|
simprl |
|
| 13 |
1
|
subgss |
|
| 14 |
12 13
|
syl |
|
| 15 |
11 14
|
ssfid |
|
| 16 |
|
simprrl |
|
| 17 |
|
ssdomg |
|
| 18 |
15 16 17
|
sylc |
|
| 19 |
|
simprrr |
|
| 20 |
|
eqid |
|
| 21 |
20
|
subggrp |
|
| 22 |
12 21
|
syl |
|
| 23 |
20
|
subgbas |
|
| 24 |
12 23
|
syl |
|
| 25 |
24 15
|
eqeltrrd |
|
| 26 |
|
eqid |
|
| 27 |
26
|
pgpfi |
|
| 28 |
22 25 27
|
syl2anc |
|
| 29 |
19 28
|
mpbid |
|
| 30 |
29
|
simpld |
|
| 31 |
|
prmnn |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
nnred |
|
| 34 |
32
|
nnge1d |
|
| 35 |
|
eqid |
|
| 36 |
35
|
subg0cl |
|
| 37 |
12 36
|
syl |
|
| 38 |
37
|
ne0d |
|
| 39 |
|
hashnncl |
|
| 40 |
15 39
|
syl |
|
| 41 |
38 40
|
mpbird |
|
| 42 |
30 41
|
pccld |
|
| 43 |
42
|
nn0zd |
|
| 44 |
|
simpl1 |
|
| 45 |
1
|
grpbn0 |
|
| 46 |
44 45
|
syl |
|
| 47 |
|
hashnncl |
|
| 48 |
10 47
|
syl |
|
| 49 |
46 48
|
mpbird |
|
| 50 |
8 49
|
pccld |
|
| 51 |
50
|
adantr |
|
| 52 |
51
|
nn0zd |
|
| 53 |
|
oveq1 |
|
| 54 |
|
oveq1 |
|
| 55 |
53 54
|
breq12d |
|
| 56 |
1
|
lagsubg |
|
| 57 |
12 11 56
|
syl2anc |
|
| 58 |
41
|
nnzd |
|
| 59 |
49
|
adantr |
|
| 60 |
59
|
nnzd |
|
| 61 |
|
pc2dvds |
|
| 62 |
58 60 61
|
syl2anc |
|
| 63 |
57 62
|
mpbid |
|
| 64 |
55 63 30
|
rspcdva |
|
| 65 |
|
eluz2 |
|
| 66 |
43 52 64 65
|
syl3anbrc |
|
| 67 |
33 34 66
|
leexp2ad |
|
| 68 |
29
|
simprd |
|
| 69 |
24
|
fveqeq2d |
|
| 70 |
69
|
rexbidv |
|
| 71 |
68 70
|
mpbird |
|
| 72 |
|
pcprmpw |
|
| 73 |
30 41 72
|
syl2anc |
|
| 74 |
71 73
|
mpbid |
|
| 75 |
|
simplrr |
|
| 76 |
67 74 75
|
3brtr4d |
|
| 77 |
1
|
subgss |
|
| 78 |
77
|
ad2antrl |
|
| 79 |
10 78
|
ssfid |
|
| 80 |
79
|
adantr |
|
| 81 |
|
hashdom |
|
| 82 |
15 80 81
|
syl2anc |
|
| 83 |
76 82
|
mpbid |
|
| 84 |
|
sbth |
|
| 85 |
18 83 84
|
syl2anc |
|
| 86 |
|
fisseneq |
|
| 87 |
15 16 85 86
|
syl3anc |
|
| 88 |
87
|
expr |
|
| 89 |
|
eqid |
|
| 90 |
89
|
subgbas |
|
| 91 |
90
|
ad2antrl |
|
| 92 |
91
|
fveq2d |
|
| 93 |
|
simprr |
|
| 94 |
92 93
|
eqtr3d |
|
| 95 |
|
oveq2 |
|
| 96 |
95
|
rspceeqv |
|
| 97 |
50 94 96
|
syl2anc |
|
| 98 |
89
|
subggrp |
|
| 99 |
98
|
ad2antrl |
|
| 100 |
91 79
|
eqeltrrd |
|
| 101 |
|
eqid |
|
| 102 |
101
|
pgpfi |
|
| 103 |
99 100 102
|
syl2anc |
|
| 104 |
8 97 103
|
mpbir2and |
|
| 105 |
104
|
adantr |
|
| 106 |
|
oveq2 |
|
| 107 |
106
|
breq2d |
|
| 108 |
|
eqimss |
|
| 109 |
108
|
biantrurd |
|
| 110 |
107 109
|
bitrd |
|
| 111 |
105 110
|
syl5ibcom |
|
| 112 |
88 111
|
impbid |
|
| 113 |
112
|
ralrimiva |
|
| 114 |
|
isslw |
|
| 115 |
8 9 113 114
|
syl3anbrc |
|
| 116 |
7 115
|
impbida |
|