Metamath Proof Explorer


Theorem fislw

Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of P dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis fislw.1 X=BaseG
Assertion fislw GGrpXFinPHPpSylGHSubGrpGH=PPpCntX

Proof

Step Hyp Ref Expression
1 fislw.1 X=BaseG
2 simpr GGrpXFinPHPpSylGHPpSylG
3 slwsubg HPpSylGHSubGrpG
4 2 3 syl GGrpXFinPHPpSylGHSubGrpG
5 simpl2 GGrpXFinPHPpSylGXFin
6 1 5 2 slwhash GGrpXFinPHPpSylGH=PPpCntX
7 4 6 jca GGrpXFinPHPpSylGHSubGrpGH=PPpCntX
8 simpl3 GGrpXFinPHSubGrpGH=PPpCntXP
9 simprl GGrpXFinPHSubGrpGH=PPpCntXHSubGrpG
10 simpl2 GGrpXFinPHSubGrpGH=PPpCntXXFin
11 10 adantr GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kXFin
12 simprl GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkSubGrpG
13 1 subgss kSubGrpGkX
14 12 13 syl GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkX
15 11 14 ssfid GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkFin
16 simprrl GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kHk
17 ssdomg kFinHkHk
18 15 16 17 sylc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kHk
19 simprrr GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPpGrpG𝑠k
20 eqid G𝑠k=G𝑠k
21 20 subggrp kSubGrpGG𝑠kGrp
22 12 21 syl GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kG𝑠kGrp
23 20 subgbas kSubGrpGk=BaseG𝑠k
24 12 23 syl GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kk=BaseG𝑠k
25 24 15 eqeltrrd GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kBaseG𝑠kFin
26 eqid BaseG𝑠k=BaseG𝑠k
27 26 pgpfi G𝑠kGrpBaseG𝑠kFinPpGrpG𝑠kPn0BaseG𝑠k=Pn
28 22 25 27 syl2anc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPpGrpG𝑠kPn0BaseG𝑠k=Pn
29 19 28 mpbid GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPn0BaseG𝑠k=Pn
30 29 simpld GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kP
31 prmnn PP
32 30 31 syl GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kP
33 32 nnred GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kP
34 32 nnge1d GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠k1P
35 eqid 0G=0G
36 35 subg0cl kSubGrpG0Gk
37 12 36 syl GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠k0Gk
38 37 ne0d GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kk
39 hashnncl kFinkk
40 15 39 syl GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkk
41 38 40 mpbird GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kk
42 30 41 pccld GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPpCntk0
43 42 nn0zd GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPpCntk
44 simpl1 GGrpXFinPHSubGrpGH=PPpCntXGGrp
45 1 grpbn0 GGrpX
46 44 45 syl GGrpXFinPHSubGrpGH=PPpCntXX
47 hashnncl XFinXX
48 10 47 syl GGrpXFinPHSubGrpGH=PPpCntXXX
49 46 48 mpbird GGrpXFinPHSubGrpGH=PPpCntXX
50 8 49 pccld GGrpXFinPHSubGrpGH=PPpCntXPpCntX0
51 50 adantr GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPpCntX0
52 51 nn0zd GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPpCntX
53 oveq1 p=PppCntk=PpCntk
54 oveq1 p=PppCntX=PpCntX
55 53 54 breq12d p=PppCntkppCntXPpCntkPpCntX
56 1 lagsubg kSubGrpGXFinkX
57 12 11 56 syl2anc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkX
58 41 nnzd GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kk
59 49 adantr GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kX
60 59 nnzd GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kX
61 pc2dvds kXkXpppCntkppCntX
62 58 60 61 syl2anc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkXpppCntkppCntX
63 57 62 mpbid GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kpppCntkppCntX
64 55 63 30 rspcdva GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPpCntkPpCntX
65 eluz2 PpCntXPpCntkPpCntkPpCntXPpCntkPpCntX
66 43 52 64 65 syl3anbrc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPpCntXPpCntk
67 33 34 66 leexp2ad GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kPPpCntkPPpCntX
68 29 simprd GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kn0BaseG𝑠k=Pn
69 24 fveqeq2d GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kk=PnBaseG𝑠k=Pn
70 69 rexbidv GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kn0k=Pnn0BaseG𝑠k=Pn
71 68 70 mpbird GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kn0k=Pn
72 pcprmpw Pkn0k=Pnk=PPpCntk
73 30 41 72 syl2anc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kn0k=Pnk=PPpCntk
74 71 73 mpbid GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kk=PPpCntk
75 simplrr GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kH=PPpCntX
76 67 74 75 3brtr4d GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkH
77 1 subgss HSubGrpGHX
78 77 ad2antrl GGrpXFinPHSubGrpGH=PPpCntXHX
79 10 78 ssfid GGrpXFinPHSubGrpGH=PPpCntXHFin
80 79 adantr GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kHFin
81 hashdom kFinHFinkHkH
82 15 80 81 syl2anc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkHkH
83 76 82 mpbid GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kkH
84 sbth HkkHHk
85 18 83 84 syl2anc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kHk
86 fisseneq kFinHkHkH=k
87 15 16 85 86 syl3anc GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kH=k
88 87 expr GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kH=k
89 eqid G𝑠H=G𝑠H
90 89 subgbas HSubGrpGH=BaseG𝑠H
91 90 ad2antrl GGrpXFinPHSubGrpGH=PPpCntXH=BaseG𝑠H
92 91 fveq2d GGrpXFinPHSubGrpGH=PPpCntXH=BaseG𝑠H
93 simprr GGrpXFinPHSubGrpGH=PPpCntXH=PPpCntX
94 92 93 eqtr3d GGrpXFinPHSubGrpGH=PPpCntXBaseG𝑠H=PPpCntX
95 oveq2 n=PpCntXPn=PPpCntX
96 95 rspceeqv PpCntX0BaseG𝑠H=PPpCntXn0BaseG𝑠H=Pn
97 50 94 96 syl2anc GGrpXFinPHSubGrpGH=PPpCntXn0BaseG𝑠H=Pn
98 89 subggrp HSubGrpGG𝑠HGrp
99 98 ad2antrl GGrpXFinPHSubGrpGH=PPpCntXG𝑠HGrp
100 91 79 eqeltrrd GGrpXFinPHSubGrpGH=PPpCntXBaseG𝑠HFin
101 eqid BaseG𝑠H=BaseG𝑠H
102 101 pgpfi G𝑠HGrpBaseG𝑠HFinPpGrpG𝑠HPn0BaseG𝑠H=Pn
103 99 100 102 syl2anc GGrpXFinPHSubGrpGH=PPpCntXPpGrpG𝑠HPn0BaseG𝑠H=Pn
104 8 97 103 mpbir2and GGrpXFinPHSubGrpGH=PPpCntXPpGrpG𝑠H
105 104 adantr GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGPpGrpG𝑠H
106 oveq2 H=kG𝑠H=G𝑠k
107 106 breq2d H=kPpGrpG𝑠HPpGrpG𝑠k
108 eqimss H=kHk
109 108 biantrurd H=kPpGrpG𝑠kHkPpGrpG𝑠k
110 107 109 bitrd H=kPpGrpG𝑠HHkPpGrpG𝑠k
111 105 110 syl5ibcom GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGH=kHkPpGrpG𝑠k
112 88 111 impbid GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kH=k
113 112 ralrimiva GGrpXFinPHSubGrpGH=PPpCntXkSubGrpGHkPpGrpG𝑠kH=k
114 isslw HPpSylGPHSubGrpGkSubGrpGHkPpGrpG𝑠kH=k
115 8 9 113 114 syl3anbrc GGrpXFinPHSubGrpGH=PPpCntXHPpSylG
116 7 115 impbida GGrpXFinPHPpSylGHSubGrpGH=PPpCntX