Description: A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourierlemiblglemlem.p | |
|
fourierdlem100.t | |
||
fourierdlem100.m | |
||
fourierdlem100.q | |
||
fourierdlem100.f | |
||
fourierdlem100.per | |
||
fourierdlem100.fcn | |
||
fourierdlem100.r | |
||
fourierdlem100.l | |
||
fourierdlem100.c | |
||
fourierdlem100.d | |
||
fourierdlem100.o | |
||
fourierdlem100.n | |
||
fourierdlem100.h | |
||
fourierdlem100.s | |
||
fourierdlem100.e | |
||
fourierdlem100.j | |
||
fourierdlem100.i | |
||
Assertion | fourierdlem100 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierlemiblglemlem.p | |
|
2 | fourierdlem100.t | |
|
3 | fourierdlem100.m | |
|
4 | fourierdlem100.q | |
|
5 | fourierdlem100.f | |
|
6 | fourierdlem100.per | |
|
7 | fourierdlem100.fcn | |
|
8 | fourierdlem100.r | |
|
9 | fourierdlem100.l | |
|
10 | fourierdlem100.c | |
|
11 | fourierdlem100.d | |
|
12 | fourierdlem100.o | |
|
13 | fourierdlem100.n | |
|
14 | fourierdlem100.h | |
|
15 | fourierdlem100.s | |
|
16 | fourierdlem100.e | |
|
17 | fourierdlem100.j | |
|
18 | fourierdlem100.i | |
|
19 | elioore | |
|
20 | 11 19 | syl | |
21 | 10 20 | iccssred | |
22 | 5 21 | feqresmpt | |
23 | fveq2 | |
|
24 | oveq1 | |
|
25 | 24 | fveq2d | |
26 | 23 25 | breq12d | |
27 | 26 | cbvralvw | |
28 | 27 | anbi2i | |
29 | 28 | a1i | |
30 | 29 | rabbiia | |
31 | 30 | mpteq2i | |
32 | 12 31 | eqtri | |
33 | elioo4g | |
|
34 | 11 33 | sylib | |
35 | 34 | simprd | |
36 | 35 | simpld | |
37 | id | |
|
38 | 2 | eqcomi | |
39 | 38 | oveq2i | |
40 | 39 | a1i | |
41 | 37 40 | oveq12d | |
42 | 41 | eleq1d | |
43 | 42 | rexbidv | |
44 | 43 | cbvrabv | |
45 | 44 | uneq2i | |
46 | 39 | eqcomi | |
47 | 46 | oveq2i | |
48 | 47 | eleq1i | |
49 | 48 | rexbii | |
50 | 49 | rgenw | |
51 | rabbi | |
|
52 | 50 51 | mpbi | |
53 | 52 | uneq2i | |
54 | 14 53 | eqtri | |
55 | 54 | fveq2i | |
56 | 55 | oveq1i | |
57 | 13 56 | eqtri | |
58 | isoeq5 | |
|
59 | 54 58 | ax-mp | |
60 | 59 | iotabii | |
61 | 15 60 | eqtri | |
62 | 2 1 3 4 10 20 36 12 45 57 61 | fourierdlem54 | |
63 | 62 | simpld | |
64 | 63 | simpld | |
65 | 63 | simprd | |
66 | 5 21 | fssresd | |
67 | ioossicc | |
|
68 | 10 | adantr | |
69 | 68 | rexrd | |
70 | 11 | adantr | |
71 | 70 19 | syl | |
72 | 71 | rexrd | |
73 | 12 64 65 | fourierdlem15 | |
74 | 73 | adantr | |
75 | simpr | |
|
76 | 69 72 74 75 | fourierdlem8 | |
77 | 67 76 | sstrid | |
78 | 77 | resabs1d | |
79 | 3 | adantr | |
80 | 4 | adantr | |
81 | 5 | adantr | |
82 | 6 | adantlr | |
83 | 7 | adantlr | |
84 | eqid | |
|
85 | eqid | |
|
86 | eqid | |
|
87 | 1 2 79 80 81 82 83 68 70 12 14 13 15 16 17 75 84 85 86 18 | fourierdlem90 | |
88 | 78 87 | eqeltrd | |
89 | 8 | adantlr | |
90 | eqid | |
|
91 | 1 2 79 80 81 82 83 89 68 70 12 14 13 15 16 17 75 84 18 90 | fourierdlem89 | |
92 | 78 | eqcomd | |
93 | 92 | oveq1d | |
94 | 91 93 | eleqtrd | |
95 | 9 | adantlr | |
96 | eqid | |
|
97 | 1 2 79 80 81 82 83 95 68 70 12 14 13 15 16 17 75 84 18 96 | fourierdlem91 | |
98 | 92 | oveq1d | |
99 | 97 98 | eleqtrd | |
100 | 32 64 65 66 88 94 99 | fourierdlem69 | |
101 | 22 100 | eqeltrrd | |