Metamath Proof Explorer


Theorem fourierdlem100

Description: A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierlemiblglemlem.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem100.t T=BA
fourierdlem100.m φM
fourierdlem100.q φQPM
fourierdlem100.f φF:
fourierdlem100.per φxFx+T=Fx
fourierdlem100.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem100.r φi0..^MRFQiQi+1limQi
fourierdlem100.l φi0..^MLFQiQi+1limQi+1
fourierdlem100.c φC
fourierdlem100.d φDC+∞
fourierdlem100.o O=mp0m|p0=Cpm=Di0..^mpi<pi+1
fourierdlem100.n N=H1
fourierdlem100.h H=CDyCD|ky+kTranQ
fourierdlem100.s S=ιf|fIsom<,<0NH
fourierdlem100.e E=xx+BxTT
fourierdlem100.j J=yABify=BAy
fourierdlem100.i I=xsupi0..^M|QiJEx<
Assertion fourierdlem100 φxCDFx𝐿1

Proof

Step Hyp Ref Expression
1 fourierlemiblglemlem.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
2 fourierdlem100.t T=BA
3 fourierdlem100.m φM
4 fourierdlem100.q φQPM
5 fourierdlem100.f φF:
6 fourierdlem100.per φxFx+T=Fx
7 fourierdlem100.fcn φi0..^MFQiQi+1:QiQi+1cn
8 fourierdlem100.r φi0..^MRFQiQi+1limQi
9 fourierdlem100.l φi0..^MLFQiQi+1limQi+1
10 fourierdlem100.c φC
11 fourierdlem100.d φDC+∞
12 fourierdlem100.o O=mp0m|p0=Cpm=Di0..^mpi<pi+1
13 fourierdlem100.n N=H1
14 fourierdlem100.h H=CDyCD|ky+kTranQ
15 fourierdlem100.s S=ιf|fIsom<,<0NH
16 fourierdlem100.e E=xx+BxTT
17 fourierdlem100.j J=yABify=BAy
18 fourierdlem100.i I=xsupi0..^M|QiJEx<
19 elioore DC+∞D
20 11 19 syl φD
21 10 20 iccssred φCD
22 5 21 feqresmpt φFCD=xCDFx
23 fveq2 i=jpi=pj
24 oveq1 i=ji+1=j+1
25 24 fveq2d i=jpi+1=pj+1
26 23 25 breq12d i=jpi<pi+1pj<pj+1
27 26 cbvralvw i0..^mpi<pi+1j0..^mpj<pj+1
28 27 anbi2i p0=Cpm=Di0..^mpi<pi+1p0=Cpm=Dj0..^mpj<pj+1
29 28 a1i p0mp0=Cpm=Di0..^mpi<pi+1p0=Cpm=Dj0..^mpj<pj+1
30 29 rabbiia p0m|p0=Cpm=Di0..^mpi<pi+1=p0m|p0=Cpm=Dj0..^mpj<pj+1
31 30 mpteq2i mp0m|p0=Cpm=Di0..^mpi<pi+1=mp0m|p0=Cpm=Dj0..^mpj<pj+1
32 12 31 eqtri O=mp0m|p0=Cpm=Dj0..^mpj<pj+1
33 elioo4g DC+∞C*+∞*DC<DD<+∞
34 11 33 sylib φC*+∞*DC<DD<+∞
35 34 simprd φC<DD<+∞
36 35 simpld φC<D
37 id y=xy=x
38 2 eqcomi BA=T
39 38 oveq2i kBA=kT
40 39 a1i y=xkBA=kT
41 37 40 oveq12d y=xy+kBA=x+kT
42 41 eleq1d y=xy+kBAranQx+kTranQ
43 42 rexbidv y=xky+kBAranQkx+kTranQ
44 43 cbvrabv yCD|ky+kBAranQ=xCD|kx+kTranQ
45 44 uneq2i CDyCD|ky+kBAranQ=CDxCD|kx+kTranQ
46 39 eqcomi kT=kBA
47 46 oveq2i y+kT=y+kBA
48 47 eleq1i y+kTranQy+kBAranQ
49 48 rexbii ky+kTranQky+kBAranQ
50 49 rgenw yCDky+kTranQky+kBAranQ
51 rabbi yCDky+kTranQky+kBAranQyCD|ky+kTranQ=yCD|ky+kBAranQ
52 50 51 mpbi yCD|ky+kTranQ=yCD|ky+kBAranQ
53 52 uneq2i CDyCD|ky+kTranQ=CDyCD|ky+kBAranQ
54 14 53 eqtri H=CDyCD|ky+kBAranQ
55 54 fveq2i H=CDyCD|ky+kBAranQ
56 55 oveq1i H1=CDyCD|ky+kBAranQ1
57 13 56 eqtri N=CDyCD|ky+kBAranQ1
58 isoeq5 H=CDyCD|ky+kBAranQfIsom<,<0NHfIsom<,<0NCDyCD|ky+kBAranQ
59 54 58 ax-mp fIsom<,<0NHfIsom<,<0NCDyCD|ky+kBAranQ
60 59 iotabii ιf|fIsom<,<0NH=ιf|fIsom<,<0NCDyCD|ky+kBAranQ
61 15 60 eqtri S=ιf|fIsom<,<0NCDyCD|ky+kBAranQ
62 2 1 3 4 10 20 36 12 45 57 61 fourierdlem54 φNSONSIsom<,<0NCDyCD|ky+kBAranQ
63 62 simpld φNSON
64 63 simpld φN
65 63 simprd φSON
66 5 21 fssresd φFCD:CD
67 ioossicc SjSj+1SjSj+1
68 10 adantr φj0..^NC
69 68 rexrd φj0..^NC*
70 11 adantr φj0..^NDC+∞
71 70 19 syl φj0..^ND
72 71 rexrd φj0..^ND*
73 12 64 65 fourierdlem15 φS:0NCD
74 73 adantr φj0..^NS:0NCD
75 simpr φj0..^Nj0..^N
76 69 72 74 75 fourierdlem8 φj0..^NSjSj+1CD
77 67 76 sstrid φj0..^NSjSj+1CD
78 77 resabs1d φj0..^NFCDSjSj+1=FSjSj+1
79 3 adantr φj0..^NM
80 4 adantr φj0..^NQPM
81 5 adantr φj0..^NF:
82 6 adantlr φj0..^NxFx+T=Fx
83 7 adantlr φj0..^Ni0..^MFQiQi+1:QiQi+1cn
84 eqid Sj+1ESj+1=Sj+1ESj+1
85 eqid FJESjESj+1=FJESjESj+1
86 eqid yJESj+Sj+1-ESj+1ESj+1+Sj+1-ESj+1FJESjESj+1ySj+1ESj+1=yJESj+Sj+1-ESj+1ESj+1+Sj+1-ESj+1FJESjESj+1ySj+1ESj+1
87 1 2 79 80 81 82 83 68 70 12 14 13 15 16 17 75 84 85 86 18 fourierdlem90 φj0..^NFSjSj+1:SjSj+1cn
88 78 87 eqeltrd φj0..^NFCDSjSj+1:SjSj+1cn
89 8 adantlr φj0..^Ni0..^MRFQiQi+1limQi
90 eqid i0..^MR=i0..^MR
91 1 2 79 80 81 82 83 89 68 70 12 14 13 15 16 17 75 84 18 90 fourierdlem89 φj0..^NifJESj=QISji0..^MRISjFJESjFSjSj+1limSj
92 78 eqcomd φj0..^NFSjSj+1=FCDSjSj+1
93 92 oveq1d φj0..^NFSjSj+1limSj=FCDSjSj+1limSj
94 91 93 eleqtrd φj0..^NifJESj=QISji0..^MRISjFJESjFCDSjSj+1limSj
95 9 adantlr φj0..^Ni0..^MLFQiQi+1limQi+1
96 eqid i0..^ML=i0..^ML
97 1 2 79 80 81 82 83 95 68 70 12 14 13 15 16 17 75 84 18 96 fourierdlem91 φj0..^NifESj+1=QISj+1i0..^MLISjFESj+1FSjSj+1limSj+1
98 92 oveq1d φj0..^NFSjSj+1limSj+1=FCDSjSj+1limSj+1
99 97 98 eleqtrd φj0..^NifESj+1=QISj+1i0..^MLISjFESj+1FCDSjSj+1limSj+1
100 32 64 65 66 88 94 99 fourierdlem69 φFCD𝐿1
101 22 100 eqeltrrd φxCDFx𝐿1