Metamath Proof Explorer


Theorem fourierdlem22

Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem22.f φF:
fourierdlem22.c C=ππ
fourierdlem22.fibl φFC𝐿1
fourierdlem22.a A=n0CFxcosnxdxπ
fourierdlem22.b B=nCFxsinnxdxπ
Assertion fourierdlem22 φn0AnnBn

Proof

Step Hyp Ref Expression
1 fourierdlem22.f φF:
2 fourierdlem22.c C=ππ
3 fourierdlem22.fibl φFC𝐿1
4 fourierdlem22.a A=n0CFxcosnxdxπ
5 fourierdlem22.b B=nCFxsinnxdxπ
6 1 adantr φxCF:
7 ioossre ππ
8 id xCxC
9 8 2 eleqtrdi xCxππ
10 7 9 sselid xCx
11 10 adantl φxCx
12 6 11 ffvelcdmd φxCFx
13 12 adantlr φn0xCFx
14 nn0re n0n
15 14 adantr n0xCn
16 10 adantl n0xCx
17 15 16 remulcld n0xCnx
18 17 recoscld n0xCcosnx
19 18 adantll φn0xCcosnx
20 13 19 remulcld φn0xCFxcosnx
21 ioombl ππdomvol
22 2 21 eqeltri Cdomvol
23 22 a1i φn0Cdomvol
24 eqidd φn0xCcosnx=xCcosnx
25 eqidd φn0xCFx=xCFx
26 23 19 13 24 25 offval2 φn0xCcosnx×fxCFx=xCcosnxFx
27 19 recnd φn0xCcosnx
28 13 recnd φn0xCFx
29 27 28 mulcomd φn0xCcosnxFx=Fxcosnx
30 29 mpteq2dva φn0xCcosnxFx=xCFxcosnx
31 26 30 eqtr2d φn0xCFxcosnx=xCcosnx×fxCFx
32 coscn cos:cn
33 32 a1i n0cos:cn
34 2 7 eqsstri C
35 ax-resscn
36 34 35 sstri C
37 36 a1i n0C
38 14 recnd n0n
39 ssid
40 39 a1i n0
41 37 38 40 constcncfg n0xCn:Ccn
42 cncfmptid CxCx:Ccn
43 36 39 42 mp2an xCx:Ccn
44 43 a1i n0xCx:Ccn
45 41 44 mulcncf n0xCnx:Ccn
46 33 45 cncfmpt1f n0xCcosnx:Ccn
47 cnmbf CdomvolxCcosnx:CcnxCcosnxMblFn
48 22 46 47 sylancr n0xCcosnxMblFn
49 48 adantl φn0xCcosnxMblFn
50 1 feqmptd φF=xFx
51 50 reseq1d φFC=xFxC
52 resmpt CxFxC=xCFx
53 34 52 mp1i φxFxC=xCFx
54 51 53 eqtr2d φxCFx=FC
55 54 3 eqeltrd φxCFx𝐿1
56 55 adantr φn0xCFx𝐿1
57 1re 1
58 simpr n0ydomxCcosnxydomxCcosnx
59 nfv xn0
60 nfmpt1 _xxCcosnx
61 60 nfdm _xdomxCcosnx
62 61 nfcri xydomxCcosnx
63 59 62 nfan xn0ydomxCcosnx
64 18 ex n0xCcosnx
65 64 adantr n0ydomxCcosnxxCcosnx
66 63 65 ralrimi n0ydomxCcosnxxCcosnx
67 dmmptg xCcosnxdomxCcosnx=C
68 66 67 syl n0ydomxCcosnxdomxCcosnx=C
69 58 68 eleqtrd n0ydomxCcosnxyC
70 eqidd n0yCxCcosnx=xCcosnx
71 oveq2 x=ynx=ny
72 71 fveq2d x=ycosnx=cosny
73 72 adantl n0yCx=ycosnx=cosny
74 simpr n0yCyC
75 14 adantr n0yCn
76 34 74 sselid n0yCy
77 75 76 remulcld n0yCny
78 77 recoscld n0yCcosny
79 70 73 74 78 fvmptd n0yCxCcosnxy=cosny
80 79 fveq2d n0yCxCcosnxy=cosny
81 abscosbd nycosny1
82 77 81 syl n0yCcosny1
83 80 82 eqbrtrd n0yCxCcosnxy1
84 69 83 syldan n0ydomxCcosnxxCcosnxy1
85 84 ralrimiva n0ydomxCcosnxxCcosnxy1
86 breq2 b=1xCcosnxybxCcosnxy1
87 86 ralbidv b=1ydomxCcosnxxCcosnxybydomxCcosnxxCcosnxy1
88 87 rspcev 1ydomxCcosnxxCcosnxy1bydomxCcosnxxCcosnxyb
89 57 85 88 sylancr n0bydomxCcosnxxCcosnxyb
90 89 adantl φn0bydomxCcosnxxCcosnxyb
91 bddmulibl xCcosnxMblFnxCFx𝐿1bydomxCcosnxxCcosnxybxCcosnx×fxCFx𝐿1
92 49 56 90 91 syl3anc φn0xCcosnx×fxCFx𝐿1
93 31 92 eqeltrd φn0xCFxcosnx𝐿1
94 20 93 itgrecl φn0CFxcosnxdx
95 pire π
96 95 a1i φn0π
97 0re 0
98 pipos 0<π
99 97 98 gtneii π0
100 99 a1i φn0π0
101 94 96 100 redivcld φn0CFxcosnxdxπ
102 101 4 fmptd φA:0
103 102 ffvelcdmda φn0An
104 103 ex φn0An
105 nnnn0 nn0
106 17 resincld n0xCsinnx
107 106 adantll φn0xCsinnx
108 13 107 remulcld φn0xCFxsinnx
109 eqidd φn0xCsinnx=xCsinnx
110 23 107 13 109 25 offval2 φn0xCsinnx×fxCFx=xCsinnxFx
111 107 recnd φn0xCsinnx
112 111 28 mulcomd φn0xCsinnxFx=Fxsinnx
113 112 mpteq2dva φn0xCsinnxFx=xCFxsinnx
114 110 113 eqtr2d φn0xCFxsinnx=xCsinnx×fxCFx
115 sincn sin:cn
116 115 a1i φn0sin:cn
117 45 adantl φn0xCnx:Ccn
118 116 117 cncfmpt1f φn0xCsinnx:Ccn
119 cnmbf CdomvolxCsinnx:CcnxCsinnxMblFn
120 22 118 119 sylancr φn0xCsinnxMblFn
121 simpr n0ydomxCsinnxydomxCsinnx
122 nfmpt1 _xxCsinnx
123 122 nfdm _xdomxCsinnx
124 123 nfcri xydomxCsinnx
125 59 124 nfan xn0ydomxCsinnx
126 106 ex n0xCsinnx
127 126 adantr n0ydomxCsinnxxCsinnx
128 125 127 ralrimi n0ydomxCsinnxxCsinnx
129 dmmptg xCsinnxdomxCsinnx=C
130 128 129 syl n0ydomxCsinnxdomxCsinnx=C
131 121 130 eleqtrd n0ydomxCsinnxyC
132 eqidd n0yCxCsinnx=xCsinnx
133 71 fveq2d x=ysinnx=sinny
134 133 adantl n0yCx=ysinnx=sinny
135 77 resincld n0yCsinny
136 132 134 74 135 fvmptd n0yCxCsinnxy=sinny
137 136 fveq2d n0yCxCsinnxy=sinny
138 abssinbd nysinny1
139 77 138 syl n0yCsinny1
140 137 139 eqbrtrd n0yCxCsinnxy1
141 131 140 syldan n0ydomxCsinnxxCsinnxy1
142 141 ralrimiva n0ydomxCsinnxxCsinnxy1
143 breq2 b=1xCsinnxybxCsinnxy1
144 143 ralbidv b=1ydomxCsinnxxCsinnxybydomxCsinnxxCsinnxy1
145 144 rspcev 1ydomxCsinnxxCsinnxy1bydomxCsinnxxCsinnxyb
146 57 142 145 sylancr n0bydomxCsinnxxCsinnxyb
147 146 adantl φn0bydomxCsinnxxCsinnxyb
148 bddmulibl xCsinnxMblFnxCFx𝐿1bydomxCsinnxxCsinnxybxCsinnx×fxCFx𝐿1
149 120 56 147 148 syl3anc φn0xCsinnx×fxCFx𝐿1
150 114 149 eqeltrd φn0xCFxsinnx𝐿1
151 108 150 itgrecl φn0CFxsinnxdx
152 105 151 sylan2 φnCFxsinnxdx
153 95 a1i φnπ
154 99 a1i φnπ0
155 152 153 154 redivcld φnCFxsinnxdxπ
156 155 5 fmptd φB:
157 156 ffvelcdmda φnBn
158 157 ex φnBn
159 104 158 jca φn0AnnBn