Metamath Proof Explorer


Theorem fseqenlem1

Description: Lemma for fseqen . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses fseqenlem.a φAV
fseqenlem.b φBA
fseqenlem.f φF:A×A1-1 ontoA
fseqenlem.g G=seqωnV,fVxAsucnfxnFxnB
Assertion fseqenlem1 φCωGC:AC1-1A

Proof

Step Hyp Ref Expression
1 fseqenlem.a φAV
2 fseqenlem.b φBA
3 fseqenlem.f φF:A×A1-1 ontoA
4 fseqenlem.g G=seqωnV,fVxAsucnfxnFxnB
5 fveq2 y=CGy=GC
6 f1eq1 Gy=GCGy:Ay1-1AGC:Ay1-1A
7 5 6 syl y=CGy:Ay1-1AGC:Ay1-1A
8 oveq2 y=CAy=AC
9 f1eq2 Ay=ACGC:Ay1-1AGC:AC1-1A
10 8 9 syl y=CGC:Ay1-1AGC:AC1-1A
11 7 10 bitrd y=CGy:Ay1-1AGC:AC1-1A
12 11 imbi2d y=CφGy:Ay1-1AφGC:AC1-1A
13 fveq2 y=Gy=G
14 snex BV
15 4 seqom0g BVG=B
16 14 15 ax-mp G=B
17 13 16 eqtrdi y=Gy=B
18 f1eq1 Gy=BGy:Ay1-1AB:Ay1-1A
19 17 18 syl y=Gy:Ay1-1AB:Ay1-1A
20 oveq2 y=Ay=A
21 f1eq2 Ay=AB:Ay1-1AB:A1-1A
22 20 21 syl y=B:Ay1-1AB:A1-1A
23 19 22 bitrd y=Gy:Ay1-1AB:A1-1A
24 fveq2 y=mGy=Gm
25 f1eq1 Gy=GmGy:Ay1-1AGm:Ay1-1A
26 24 25 syl y=mGy:Ay1-1AGm:Ay1-1A
27 oveq2 y=mAy=Am
28 f1eq2 Ay=AmGm:Ay1-1AGm:Am1-1A
29 27 28 syl y=mGm:Ay1-1AGm:Am1-1A
30 26 29 bitrd y=mGy:Ay1-1AGm:Am1-1A
31 fveq2 y=sucmGy=Gsucm
32 f1eq1 Gy=GsucmGy:Ay1-1AGsucm:Ay1-1A
33 31 32 syl y=sucmGy:Ay1-1AGsucm:Ay1-1A
34 oveq2 y=sucmAy=Asucm
35 f1eq2 Ay=AsucmGsucm:Ay1-1AGsucm:Asucm1-1A
36 34 35 syl y=sucmGsucm:Ay1-1AGsucm:Asucm1-1A
37 33 36 bitrd y=sucmGy:Ay1-1AGsucm:Asucm1-1A
38 0ex V
39 f1osng VBAB:1-1 ontoB
40 38 2 39 sylancr φB:1-1 ontoB
41 f1of1 B:1-1 ontoBB:1-1B
42 40 41 syl φB:1-1B
43 2 snssd φBA
44 f1ss B:1-1BBAB:1-1A
45 42 43 44 syl2anc φB:1-1A
46 map0e AVA=1𝑜
47 1 46 syl φA=1𝑜
48 df1o2 1𝑜=
49 47 48 eqtrdi φA=
50 f1eq2 A=B:A1-1AB:1-1A
51 49 50 syl φB:A1-1AB:1-1A
52 45 51 mpbird φB:A1-1A
53 4 seqomsuc mωGsucm=mnV,fVxAsucnfxnFxnGm
54 53 ad2antrl φmωGm:Am1-1AGsucm=mnV,fVxAsucnfxnFxnGm
55 vex mV
56 fvex GmV
57 reseq1 x=zxa=za
58 57 fveq2d x=zbxa=bza
59 fveq1 x=zxa=za
60 58 59 oveq12d x=zbxaFxa=bzaFza
61 60 cbvmptv xAsucabxaFxa=zAsucabzaFza
62 suceq a=msuca=sucm
63 62 adantr a=mb=Gmsuca=sucm
64 63 oveq2d a=mb=GmAsuca=Asucm
65 simpr a=mb=Gmb=Gm
66 reseq2 a=mza=zm
67 66 adantr a=mb=Gmza=zm
68 65 67 fveq12d a=mb=Gmbza=Gmzm
69 simpl a=mb=Gma=m
70 69 fveq2d a=mb=Gmza=zm
71 68 70 oveq12d a=mb=GmbzaFza=GmzmFzm
72 64 71 mpteq12dv a=mb=GmzAsucabzaFza=zAsucmGmzmFzm
73 61 72 eqtrid a=mb=GmxAsucabxaFxa=zAsucmGmzmFzm
74 nfcv _axAsucnfxnFxn
75 nfcv _bxAsucnfxnFxn
76 nfcv _nxAsucabxaFxa
77 nfcv _fxAsucabxaFxa
78 suceq n=asucn=suca
79 78 adantr n=af=bsucn=suca
80 79 oveq2d n=af=bAsucn=Asuca
81 simpr n=af=bf=b
82 reseq2 n=axn=xa
83 82 adantr n=af=bxn=xa
84 81 83 fveq12d n=af=bfxn=bxa
85 simpl n=af=bn=a
86 85 fveq2d n=af=bxn=xa
87 84 86 oveq12d n=af=bfxnFxn=bxaFxa
88 80 87 mpteq12dv n=af=bxAsucnfxnFxn=xAsucabxaFxa
89 74 75 76 77 88 cbvmpo nV,fVxAsucnfxnFxn=aV,bVxAsucabxaFxa
90 ovex AsucmV
91 90 mptex zAsucmGmzmFzmV
92 73 89 91 ovmpoa mVGmVmnV,fVxAsucnfxnFxnGm=zAsucmGmzmFzm
93 55 56 92 mp2an mnV,fVxAsucnfxnFxnGm=zAsucmGmzmFzm
94 54 93 eqtrdi φmωGm:Am1-1AGsucm=zAsucmGmzmFzm
95 3 ad2antrr φmωGm:Am1-1AzAsucmF:A×A1-1 ontoA
96 f1of F:A×A1-1 ontoAF:A×AA
97 95 96 syl φmωGm:Am1-1AzAsucmF:A×AA
98 f1f Gm:Am1-1AGm:AmA
99 98 ad2antll φmωGm:Am1-1AGm:AmA
100 99 adantr φmωGm:Am1-1AzAsucmGm:AmA
101 elmapi zAsucmz:sucmA
102 101 adantl φmωGm:Am1-1AzAsucmz:sucmA
103 sssucid msucm
104 fssres z:sucmAmsucmzm:mA
105 102 103 104 sylancl φmωGm:Am1-1AzAsucmzm:mA
106 1 ad2antrr φmωGm:Am1-1AzAsucmAV
107 elmapg AVmVzmAmzm:mA
108 106 55 107 sylancl φmωGm:Am1-1AzAsucmzmAmzm:mA
109 105 108 mpbird φmωGm:Am1-1AzAsucmzmAm
110 100 109 ffvelcdmd φmωGm:Am1-1AzAsucmGmzmA
111 55 sucid msucm
112 ffvelcdm z:sucmAmsucmzmA
113 102 111 112 sylancl φmωGm:Am1-1AzAsucmzmA
114 97 110 113 fovcdmd φmωGm:Am1-1AzAsucmGmzmFzmA
115 94 114 fmpt3d φmωGm:Am1-1AGsucm:AsucmA
116 elmapi aAsucma:sucmA
117 116 ad2antrl φmωGm:Am1-1AaAsucmbAsucma:sucmA
118 117 ffnd φmωGm:Am1-1AaAsucmbAsucmaFnsucm
119 elmapi bAsucmb:sucmA
120 119 ad2antll φmωGm:Am1-1AaAsucmbAsucmb:sucmA
121 120 ffnd φmωGm:Am1-1AaAsucmbAsucmbFnsucm
122 103 a1i φmωGm:Am1-1AaAsucmbAsucmmsucm
123 fvreseq aFnsucmbFnsucmmsucmam=bmxmax=bx
124 118 121 122 123 syl21anc φmωGm:Am1-1AaAsucmbAsucmam=bmxmax=bx
125 fveq2 x=max=am
126 fveq2 x=mbx=bm
127 125 126 eqeq12d x=max=bxam=bm
128 55 127 ralsn xmax=bxam=bm
129 128 bicomi am=bmxmax=bx
130 129 a1i φmωGm:Am1-1AaAsucmbAsucmam=bmxmax=bx
131 124 130 anbi12d φmωGm:Am1-1AaAsucmbAsucmam=bmam=bmxmax=bxxmax=bx
132 94 adantr φmωGm:Am1-1AaAsucmbAsucmGsucm=zAsucmGmzmFzm
133 132 fveq1d φmωGm:Am1-1AaAsucmbAsucmGsucma=zAsucmGmzmFzma
134 reseq1 z=azm=am
135 134 fveq2d z=aGmzm=Gmam
136 fveq1 z=azm=am
137 135 136 oveq12d z=aGmzmFzm=GmamFam
138 eqid zAsucmGmzmFzm=zAsucmGmzmFzm
139 ovex GmamFamV
140 137 138 139 fvmpt aAsucmzAsucmGmzmFzma=GmamFam
141 140 ad2antrl φmωGm:Am1-1AaAsucmbAsucmzAsucmGmzmFzma=GmamFam
142 133 141 eqtrd φmωGm:Am1-1AaAsucmbAsucmGsucma=GmamFam
143 df-ov GmamFam=FGmamam
144 142 143 eqtrdi φmωGm:Am1-1AaAsucmbAsucmGsucma=FGmamam
145 132 fveq1d φmωGm:Am1-1AaAsucmbAsucmGsucmb=zAsucmGmzmFzmb
146 reseq1 z=bzm=bm
147 146 fveq2d z=bGmzm=Gmbm
148 fveq1 z=bzm=bm
149 147 148 oveq12d z=bGmzmFzm=GmbmFbm
150 ovex GmbmFbmV
151 149 138 150 fvmpt bAsucmzAsucmGmzmFzmb=GmbmFbm
152 151 ad2antll φmωGm:Am1-1AaAsucmbAsucmzAsucmGmzmFzmb=GmbmFbm
153 145 152 eqtrd φmωGm:Am1-1AaAsucmbAsucmGsucmb=GmbmFbm
154 df-ov GmbmFbm=FGmbmbm
155 153 154 eqtrdi φmωGm:Am1-1AaAsucmbAsucmGsucmb=FGmbmbm
156 144 155 eqeq12d φmωGm:Am1-1AaAsucmbAsucmGsucma=GsucmbFGmamam=FGmbmbm
157 3 ad2antrr φmωGm:Am1-1AaAsucmbAsucmF:A×A1-1 ontoA
158 f1of1 F:A×A1-1 ontoAF:A×A1-1A
159 157 158 syl φmωGm:Am1-1AaAsucmbAsucmF:A×A1-1A
160 99 adantr φmωGm:Am1-1AaAsucmbAsucmGm:AmA
161 fssres a:sucmAmsucmam:mA
162 117 103 161 sylancl φmωGm:Am1-1AaAsucmbAsucmam:mA
163 1 ad2antrr φmωGm:Am1-1AaAsucmbAsucmAV
164 elmapg AVmVamAmam:mA
165 163 55 164 sylancl φmωGm:Am1-1AaAsucmbAsucmamAmam:mA
166 162 165 mpbird φmωGm:Am1-1AaAsucmbAsucmamAm
167 160 166 ffvelcdmd φmωGm:Am1-1AaAsucmbAsucmGmamA
168 ffvelcdm a:sucmAmsucmamA
169 117 111 168 sylancl φmωGm:Am1-1AaAsucmbAsucmamA
170 167 169 opelxpd φmωGm:Am1-1AaAsucmbAsucmGmamamA×A
171 fssres b:sucmAmsucmbm:mA
172 120 103 171 sylancl φmωGm:Am1-1AaAsucmbAsucmbm:mA
173 elmapg AVmVbmAmbm:mA
174 163 55 173 sylancl φmωGm:Am1-1AaAsucmbAsucmbmAmbm:mA
175 172 174 mpbird φmωGm:Am1-1AaAsucmbAsucmbmAm
176 160 175 ffvelcdmd φmωGm:Am1-1AaAsucmbAsucmGmbmA
177 ffvelcdm b:sucmAmsucmbmA
178 120 111 177 sylancl φmωGm:Am1-1AaAsucmbAsucmbmA
179 176 178 opelxpd φmωGm:Am1-1AaAsucmbAsucmGmbmbmA×A
180 f1fveq F:A×A1-1AGmamamA×AGmbmbmA×AFGmamam=FGmbmbmGmamam=Gmbmbm
181 159 170 179 180 syl12anc φmωGm:Am1-1AaAsucmbAsucmFGmamam=FGmbmbmGmamam=Gmbmbm
182 fvex GmamV
183 fvex amV
184 182 183 opth Gmamam=GmbmbmGmam=Gmbmam=bm
185 181 184 bitrdi φmωGm:Am1-1AaAsucmbAsucmFGmamam=FGmbmbmGmam=Gmbmam=bm
186 simplrr φmωGm:Am1-1AaAsucmbAsucmGm:Am1-1A
187 f1fveq Gm:Am1-1AamAmbmAmGmam=Gmbmam=bm
188 186 166 175 187 syl12anc φmωGm:Am1-1AaAsucmbAsucmGmam=Gmbmam=bm
189 188 anbi1d φmωGm:Am1-1AaAsucmbAsucmGmam=Gmbmam=bmam=bmam=bm
190 156 185 189 3bitrd φmωGm:Am1-1AaAsucmbAsucmGsucma=Gsucmbam=bmam=bm
191 eqfnfv aFnsucmbFnsucma=bxsucmax=bx
192 118 121 191 syl2anc φmωGm:Am1-1AaAsucmbAsucma=bxsucmax=bx
193 df-suc sucm=mm
194 193 raleqi xsucmax=bxxmmax=bx
195 ralunb xmmax=bxxmax=bxxmax=bx
196 194 195 bitri xsucmax=bxxmax=bxxmax=bx
197 192 196 bitrdi φmωGm:Am1-1AaAsucmbAsucma=bxmax=bxxmax=bx
198 131 190 197 3bitr4d φmωGm:Am1-1AaAsucmbAsucmGsucma=Gsucmba=b
199 198 biimpd φmωGm:Am1-1AaAsucmbAsucmGsucma=Gsucmba=b
200 199 ralrimivva φmωGm:Am1-1AaAsucmbAsucmGsucma=Gsucmba=b
201 dff13 Gsucm:Asucm1-1AGsucm:AsucmAaAsucmbAsucmGsucma=Gsucmba=b
202 115 200 201 sylanbrc φmωGm:Am1-1AGsucm:Asucm1-1A
203 202 expr φmωGm:Am1-1AGsucm:Asucm1-1A
204 203 expcom mωφGm:Am1-1AGsucm:Asucm1-1A
205 23 30 37 52 204 finds2 yωφGy:Ay1-1A
206 12 205 vtoclga CωφGC:AC1-1A
207 206 impcom φCωGC:AC1-1A