Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
fseqenlem1
Next ⟩
fseqenlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fseqenlem1
Description:
Lemma for
fseqen
.
(Contributed by
Mario Carneiro
, 17-May-2015)
Ref
Expression
Hypotheses
fseqenlem.a
⊢
φ
→
A
∈
V
fseqenlem.b
⊢
φ
→
B
∈
A
fseqenlem.f
⊢
φ
→
F
:
A
×
A
⟶
1-1 onto
A
fseqenlem.g
⊢
G
=
seq
ω
n
∈
V
,
f
∈
V
⟼
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
∅
B
Assertion
fseqenlem1
ω
⊢
φ
∧
C
∈
ω
→
G
C
:
A
C
⟶
1-1
A
Proof
Step
Hyp
Ref
Expression
1
fseqenlem.a
⊢
φ
→
A
∈
V
2
fseqenlem.b
⊢
φ
→
B
∈
A
3
fseqenlem.f
⊢
φ
→
F
:
A
×
A
⟶
1-1 onto
A
4
fseqenlem.g
⊢
G
=
seq
ω
n
∈
V
,
f
∈
V
⟼
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
∅
B
5
fveq2
⊢
y
=
C
→
G
y
=
G
C
6
f1eq1
⊢
G
y
=
G
C
→
G
y
:
A
y
⟶
1-1
A
↔
G
C
:
A
y
⟶
1-1
A
7
5
6
syl
⊢
y
=
C
→
G
y
:
A
y
⟶
1-1
A
↔
G
C
:
A
y
⟶
1-1
A
8
oveq2
⊢
y
=
C
→
A
y
=
A
C
9
f1eq2
⊢
A
y
=
A
C
→
G
C
:
A
y
⟶
1-1
A
↔
G
C
:
A
C
⟶
1-1
A
10
8
9
syl
⊢
y
=
C
→
G
C
:
A
y
⟶
1-1
A
↔
G
C
:
A
C
⟶
1-1
A
11
7
10
bitrd
⊢
y
=
C
→
G
y
:
A
y
⟶
1-1
A
↔
G
C
:
A
C
⟶
1-1
A
12
11
imbi2d
⊢
y
=
C
→
φ
→
G
y
:
A
y
⟶
1-1
A
↔
φ
→
G
C
:
A
C
⟶
1-1
A
13
fveq2
⊢
y
=
∅
→
G
y
=
G
∅
14
snex
⊢
∅
B
∈
V
15
4
seqom0g
⊢
∅
B
∈
V
→
G
∅
=
∅
B
16
14
15
ax-mp
⊢
G
∅
=
∅
B
17
13
16
eqtrdi
⊢
y
=
∅
→
G
y
=
∅
B
18
f1eq1
⊢
G
y
=
∅
B
→
G
y
:
A
y
⟶
1-1
A
↔
∅
B
:
A
y
⟶
1-1
A
19
17
18
syl
⊢
y
=
∅
→
G
y
:
A
y
⟶
1-1
A
↔
∅
B
:
A
y
⟶
1-1
A
20
oveq2
⊢
y
=
∅
→
A
y
=
A
∅
21
f1eq2
⊢
A
y
=
A
∅
→
∅
B
:
A
y
⟶
1-1
A
↔
∅
B
:
A
∅
⟶
1-1
A
22
20
21
syl
⊢
y
=
∅
→
∅
B
:
A
y
⟶
1-1
A
↔
∅
B
:
A
∅
⟶
1-1
A
23
19
22
bitrd
⊢
y
=
∅
→
G
y
:
A
y
⟶
1-1
A
↔
∅
B
:
A
∅
⟶
1-1
A
24
fveq2
⊢
y
=
m
→
G
y
=
G
m
25
f1eq1
⊢
G
y
=
G
m
→
G
y
:
A
y
⟶
1-1
A
↔
G
m
:
A
y
⟶
1-1
A
26
24
25
syl
⊢
y
=
m
→
G
y
:
A
y
⟶
1-1
A
↔
G
m
:
A
y
⟶
1-1
A
27
oveq2
⊢
y
=
m
→
A
y
=
A
m
28
f1eq2
⊢
A
y
=
A
m
→
G
m
:
A
y
⟶
1-1
A
↔
G
m
:
A
m
⟶
1-1
A
29
27
28
syl
⊢
y
=
m
→
G
m
:
A
y
⟶
1-1
A
↔
G
m
:
A
m
⟶
1-1
A
30
26
29
bitrd
⊢
y
=
m
→
G
y
:
A
y
⟶
1-1
A
↔
G
m
:
A
m
⟶
1-1
A
31
fveq2
⊢
y
=
suc
m
→
G
y
=
G
suc
m
32
f1eq1
⊢
G
y
=
G
suc
m
→
G
y
:
A
y
⟶
1-1
A
↔
G
suc
m
:
A
y
⟶
1-1
A
33
31
32
syl
⊢
y
=
suc
m
→
G
y
:
A
y
⟶
1-1
A
↔
G
suc
m
:
A
y
⟶
1-1
A
34
oveq2
⊢
y
=
suc
m
→
A
y
=
A
suc
m
35
f1eq2
⊢
A
y
=
A
suc
m
→
G
suc
m
:
A
y
⟶
1-1
A
↔
G
suc
m
:
A
suc
m
⟶
1-1
A
36
34
35
syl
⊢
y
=
suc
m
→
G
suc
m
:
A
y
⟶
1-1
A
↔
G
suc
m
:
A
suc
m
⟶
1-1
A
37
33
36
bitrd
⊢
y
=
suc
m
→
G
y
:
A
y
⟶
1-1
A
↔
G
suc
m
:
A
suc
m
⟶
1-1
A
38
0ex
⊢
∅
∈
V
39
f1osng
⊢
∅
∈
V
∧
B
∈
A
→
∅
B
:
∅
⟶
1-1 onto
B
40
38
2
39
sylancr
⊢
φ
→
∅
B
:
∅
⟶
1-1 onto
B
41
f1of1
⊢
∅
B
:
∅
⟶
1-1 onto
B
→
∅
B
:
∅
⟶
1-1
B
42
40
41
syl
⊢
φ
→
∅
B
:
∅
⟶
1-1
B
43
2
snssd
⊢
φ
→
B
⊆
A
44
f1ss
⊢
∅
B
:
∅
⟶
1-1
B
∧
B
⊆
A
→
∅
B
:
∅
⟶
1-1
A
45
42
43
44
syl2anc
⊢
φ
→
∅
B
:
∅
⟶
1-1
A
46
map0e
⊢
A
∈
V
→
A
∅
=
1
𝑜
47
1
46
syl
⊢
φ
→
A
∅
=
1
𝑜
48
df1o2
⊢
1
𝑜
=
∅
49
47
48
eqtrdi
⊢
φ
→
A
∅
=
∅
50
f1eq2
⊢
A
∅
=
∅
→
∅
B
:
A
∅
⟶
1-1
A
↔
∅
B
:
∅
⟶
1-1
A
51
49
50
syl
⊢
φ
→
∅
B
:
A
∅
⟶
1-1
A
↔
∅
B
:
∅
⟶
1-1
A
52
45
51
mpbird
⊢
φ
→
∅
B
:
A
∅
⟶
1-1
A
53
4
seqomsuc
ω
⊢
m
∈
ω
→
G
suc
m
=
m
n
∈
V
,
f
∈
V
⟼
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
G
m
54
53
ad2antrl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
→
G
suc
m
=
m
n
∈
V
,
f
∈
V
⟼
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
G
m
55
vex
⊢
m
∈
V
56
fvex
⊢
G
m
∈
V
57
reseq1
⊢
x
=
z
→
x
↾
a
=
z
↾
a
58
57
fveq2d
⊢
x
=
z
→
b
x
↾
a
=
b
z
↾
a
59
fveq1
⊢
x
=
z
→
x
a
=
z
a
60
58
59
oveq12d
⊢
x
=
z
→
b
x
↾
a
F
x
a
=
b
z
↾
a
F
z
a
61
60
cbvmptv
⊢
x
∈
A
suc
a
⟼
b
x
↾
a
F
x
a
=
z
∈
A
suc
a
⟼
b
z
↾
a
F
z
a
62
suceq
⊢
a
=
m
→
suc
a
=
suc
m
63
62
adantr
⊢
a
=
m
∧
b
=
G
m
→
suc
a
=
suc
m
64
63
oveq2d
⊢
a
=
m
∧
b
=
G
m
→
A
suc
a
=
A
suc
m
65
simpr
⊢
a
=
m
∧
b
=
G
m
→
b
=
G
m
66
reseq2
⊢
a
=
m
→
z
↾
a
=
z
↾
m
67
66
adantr
⊢
a
=
m
∧
b
=
G
m
→
z
↾
a
=
z
↾
m
68
65
67
fveq12d
⊢
a
=
m
∧
b
=
G
m
→
b
z
↾
a
=
G
m
z
↾
m
69
simpl
⊢
a
=
m
∧
b
=
G
m
→
a
=
m
70
69
fveq2d
⊢
a
=
m
∧
b
=
G
m
→
z
a
=
z
m
71
68
70
oveq12d
⊢
a
=
m
∧
b
=
G
m
→
b
z
↾
a
F
z
a
=
G
m
z
↾
m
F
z
m
72
64
71
mpteq12dv
⊢
a
=
m
∧
b
=
G
m
→
z
∈
A
suc
a
⟼
b
z
↾
a
F
z
a
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
73
61
72
eqtrid
⊢
a
=
m
∧
b
=
G
m
→
x
∈
A
suc
a
⟼
b
x
↾
a
F
x
a
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
74
nfcv
⊢
Ⅎ
_
a
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
75
nfcv
⊢
Ⅎ
_
b
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
76
nfcv
⊢
Ⅎ
_
n
x
∈
A
suc
a
⟼
b
x
↾
a
F
x
a
77
nfcv
⊢
Ⅎ
_
f
x
∈
A
suc
a
⟼
b
x
↾
a
F
x
a
78
suceq
⊢
n
=
a
→
suc
n
=
suc
a
79
78
adantr
⊢
n
=
a
∧
f
=
b
→
suc
n
=
suc
a
80
79
oveq2d
⊢
n
=
a
∧
f
=
b
→
A
suc
n
=
A
suc
a
81
simpr
⊢
n
=
a
∧
f
=
b
→
f
=
b
82
reseq2
⊢
n
=
a
→
x
↾
n
=
x
↾
a
83
82
adantr
⊢
n
=
a
∧
f
=
b
→
x
↾
n
=
x
↾
a
84
81
83
fveq12d
⊢
n
=
a
∧
f
=
b
→
f
x
↾
n
=
b
x
↾
a
85
simpl
⊢
n
=
a
∧
f
=
b
→
n
=
a
86
85
fveq2d
⊢
n
=
a
∧
f
=
b
→
x
n
=
x
a
87
84
86
oveq12d
⊢
n
=
a
∧
f
=
b
→
f
x
↾
n
F
x
n
=
b
x
↾
a
F
x
a
88
80
87
mpteq12dv
⊢
n
=
a
∧
f
=
b
→
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
=
x
∈
A
suc
a
⟼
b
x
↾
a
F
x
a
89
74
75
76
77
88
cbvmpo
⊢
n
∈
V
,
f
∈
V
⟼
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
=
a
∈
V
,
b
∈
V
⟼
x
∈
A
suc
a
⟼
b
x
↾
a
F
x
a
90
ovex
⊢
A
suc
m
∈
V
91
90
mptex
⊢
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
∈
V
92
73
89
91
ovmpoa
⊢
m
∈
V
∧
G
m
∈
V
→
m
n
∈
V
,
f
∈
V
⟼
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
G
m
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
93
55
56
92
mp2an
⊢
m
n
∈
V
,
f
∈
V
⟼
x
∈
A
suc
n
⟼
f
x
↾
n
F
x
n
G
m
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
94
54
93
eqtrdi
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
→
G
suc
m
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
95
3
ad2antrr
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
F
:
A
×
A
⟶
1-1 onto
A
96
f1of
⊢
F
:
A
×
A
⟶
1-1 onto
A
→
F
:
A
×
A
⟶
A
97
95
96
syl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
F
:
A
×
A
⟶
A
98
f1f
⊢
G
m
:
A
m
⟶
1-1
A
→
G
m
:
A
m
⟶
A
99
98
ad2antll
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
→
G
m
:
A
m
⟶
A
100
99
adantr
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
G
m
:
A
m
⟶
A
101
elmapi
⊢
z
∈
A
suc
m
→
z
:
suc
m
⟶
A
102
101
adantl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
z
:
suc
m
⟶
A
103
sssucid
⊢
m
⊆
suc
m
104
fssres
⊢
z
:
suc
m
⟶
A
∧
m
⊆
suc
m
→
z
↾
m
:
m
⟶
A
105
102
103
104
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
z
↾
m
:
m
⟶
A
106
1
ad2antrr
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
A
∈
V
107
elmapg
⊢
A
∈
V
∧
m
∈
V
→
z
↾
m
∈
A
m
↔
z
↾
m
:
m
⟶
A
108
106
55
107
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
z
↾
m
∈
A
m
↔
z
↾
m
:
m
⟶
A
109
105
108
mpbird
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
z
↾
m
∈
A
m
110
100
109
ffvelcdmd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
G
m
z
↾
m
∈
A
111
55
sucid
⊢
m
∈
suc
m
112
ffvelcdm
⊢
z
:
suc
m
⟶
A
∧
m
∈
suc
m
→
z
m
∈
A
113
102
111
112
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
z
m
∈
A
114
97
110
113
fovcdmd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
z
∈
A
suc
m
→
G
m
z
↾
m
F
z
m
∈
A
115
94
114
fmpt3d
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
→
G
suc
m
:
A
suc
m
⟶
A
116
elmapi
⊢
a
∈
A
suc
m
→
a
:
suc
m
⟶
A
117
116
ad2antrl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
:
suc
m
⟶
A
118
117
ffnd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
Fn
suc
m
119
elmapi
⊢
b
∈
A
suc
m
→
b
:
suc
m
⟶
A
120
119
ad2antll
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
b
:
suc
m
⟶
A
121
120
ffnd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
b
Fn
suc
m
122
103
a1i
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
m
⊆
suc
m
123
fvreseq
⊢
a
Fn
suc
m
∧
b
Fn
suc
m
∧
m
⊆
suc
m
→
a
↾
m
=
b
↾
m
↔
∀
x
∈
m
a
x
=
b
x
124
118
121
122
123
syl21anc
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
↾
m
=
b
↾
m
↔
∀
x
∈
m
a
x
=
b
x
125
fveq2
⊢
x
=
m
→
a
x
=
a
m
126
fveq2
⊢
x
=
m
→
b
x
=
b
m
127
125
126
eqeq12d
⊢
x
=
m
→
a
x
=
b
x
↔
a
m
=
b
m
128
55
127
ralsn
⊢
∀
x
∈
m
a
x
=
b
x
↔
a
m
=
b
m
129
128
bicomi
⊢
a
m
=
b
m
↔
∀
x
∈
m
a
x
=
b
x
130
129
a1i
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
m
=
b
m
↔
∀
x
∈
m
a
x
=
b
x
131
124
130
anbi12d
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
↾
m
=
b
↾
m
∧
a
m
=
b
m
↔
∀
x
∈
m
a
x
=
b
x
∧
∀
x
∈
m
a
x
=
b
x
132
94
adantr
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
133
132
fveq1d
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
a
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
a
134
reseq1
⊢
z
=
a
→
z
↾
m
=
a
↾
m
135
134
fveq2d
⊢
z
=
a
→
G
m
z
↾
m
=
G
m
a
↾
m
136
fveq1
⊢
z
=
a
→
z
m
=
a
m
137
135
136
oveq12d
⊢
z
=
a
→
G
m
z
↾
m
F
z
m
=
G
m
a
↾
m
F
a
m
138
eqid
⊢
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
139
ovex
⊢
G
m
a
↾
m
F
a
m
∈
V
140
137
138
139
fvmpt
⊢
a
∈
A
suc
m
→
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
a
=
G
m
a
↾
m
F
a
m
141
140
ad2antrl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
a
=
G
m
a
↾
m
F
a
m
142
133
141
eqtrd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
a
=
G
m
a
↾
m
F
a
m
143
df-ov
⊢
G
m
a
↾
m
F
a
m
=
F
G
m
a
↾
m
a
m
144
142
143
eqtrdi
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
a
=
F
G
m
a
↾
m
a
m
145
132
fveq1d
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
b
=
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
b
146
reseq1
⊢
z
=
b
→
z
↾
m
=
b
↾
m
147
146
fveq2d
⊢
z
=
b
→
G
m
z
↾
m
=
G
m
b
↾
m
148
fveq1
⊢
z
=
b
→
z
m
=
b
m
149
147
148
oveq12d
⊢
z
=
b
→
G
m
z
↾
m
F
z
m
=
G
m
b
↾
m
F
b
m
150
ovex
⊢
G
m
b
↾
m
F
b
m
∈
V
151
149
138
150
fvmpt
⊢
b
∈
A
suc
m
→
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
b
=
G
m
b
↾
m
F
b
m
152
151
ad2antll
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
z
∈
A
suc
m
⟼
G
m
z
↾
m
F
z
m
b
=
G
m
b
↾
m
F
b
m
153
145
152
eqtrd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
b
=
G
m
b
↾
m
F
b
m
154
df-ov
⊢
G
m
b
↾
m
F
b
m
=
F
G
m
b
↾
m
b
m
155
153
154
eqtrdi
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
b
=
F
G
m
b
↾
m
b
m
156
144
155
eqeq12d
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
a
=
G
suc
m
b
↔
F
G
m
a
↾
m
a
m
=
F
G
m
b
↾
m
b
m
157
3
ad2antrr
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
F
:
A
×
A
⟶
1-1 onto
A
158
f1of1
⊢
F
:
A
×
A
⟶
1-1 onto
A
→
F
:
A
×
A
⟶
1-1
A
159
157
158
syl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
F
:
A
×
A
⟶
1-1
A
160
99
adantr
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
m
:
A
m
⟶
A
161
fssres
⊢
a
:
suc
m
⟶
A
∧
m
⊆
suc
m
→
a
↾
m
:
m
⟶
A
162
117
103
161
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
↾
m
:
m
⟶
A
163
1
ad2antrr
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
A
∈
V
164
elmapg
⊢
A
∈
V
∧
m
∈
V
→
a
↾
m
∈
A
m
↔
a
↾
m
:
m
⟶
A
165
163
55
164
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
↾
m
∈
A
m
↔
a
↾
m
:
m
⟶
A
166
162
165
mpbird
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
↾
m
∈
A
m
167
160
166
ffvelcdmd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
m
a
↾
m
∈
A
168
ffvelcdm
⊢
a
:
suc
m
⟶
A
∧
m
∈
suc
m
→
a
m
∈
A
169
117
111
168
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
m
∈
A
170
167
169
opelxpd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
m
a
↾
m
a
m
∈
A
×
A
171
fssres
⊢
b
:
suc
m
⟶
A
∧
m
⊆
suc
m
→
b
↾
m
:
m
⟶
A
172
120
103
171
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
b
↾
m
:
m
⟶
A
173
elmapg
⊢
A
∈
V
∧
m
∈
V
→
b
↾
m
∈
A
m
↔
b
↾
m
:
m
⟶
A
174
163
55
173
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
b
↾
m
∈
A
m
↔
b
↾
m
:
m
⟶
A
175
172
174
mpbird
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
b
↾
m
∈
A
m
176
160
175
ffvelcdmd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
m
b
↾
m
∈
A
177
ffvelcdm
⊢
b
:
suc
m
⟶
A
∧
m
∈
suc
m
→
b
m
∈
A
178
120
111
177
sylancl
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
b
m
∈
A
179
176
178
opelxpd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
m
b
↾
m
b
m
∈
A
×
A
180
f1fveq
⊢
F
:
A
×
A
⟶
1-1
A
∧
G
m
a
↾
m
a
m
∈
A
×
A
∧
G
m
b
↾
m
b
m
∈
A
×
A
→
F
G
m
a
↾
m
a
m
=
F
G
m
b
↾
m
b
m
↔
G
m
a
↾
m
a
m
=
G
m
b
↾
m
b
m
181
159
170
179
180
syl12anc
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
F
G
m
a
↾
m
a
m
=
F
G
m
b
↾
m
b
m
↔
G
m
a
↾
m
a
m
=
G
m
b
↾
m
b
m
182
fvex
⊢
G
m
a
↾
m
∈
V
183
fvex
⊢
a
m
∈
V
184
182
183
opth
⊢
G
m
a
↾
m
a
m
=
G
m
b
↾
m
b
m
↔
G
m
a
↾
m
=
G
m
b
↾
m
∧
a
m
=
b
m
185
181
184
bitrdi
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
F
G
m
a
↾
m
a
m
=
F
G
m
b
↾
m
b
m
↔
G
m
a
↾
m
=
G
m
b
↾
m
∧
a
m
=
b
m
186
simplrr
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
m
:
A
m
⟶
1-1
A
187
f1fveq
⊢
G
m
:
A
m
⟶
1-1
A
∧
a
↾
m
∈
A
m
∧
b
↾
m
∈
A
m
→
G
m
a
↾
m
=
G
m
b
↾
m
↔
a
↾
m
=
b
↾
m
188
186
166
175
187
syl12anc
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
m
a
↾
m
=
G
m
b
↾
m
↔
a
↾
m
=
b
↾
m
189
188
anbi1d
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
m
a
↾
m
=
G
m
b
↾
m
∧
a
m
=
b
m
↔
a
↾
m
=
b
↾
m
∧
a
m
=
b
m
190
156
185
189
3bitrd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
a
=
G
suc
m
b
↔
a
↾
m
=
b
↾
m
∧
a
m
=
b
m
191
eqfnfv
⊢
a
Fn
suc
m
∧
b
Fn
suc
m
→
a
=
b
↔
∀
x
∈
suc
m
a
x
=
b
x
192
118
121
191
syl2anc
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
=
b
↔
∀
x
∈
suc
m
a
x
=
b
x
193
df-suc
⊢
suc
m
=
m
∪
m
194
193
raleqi
⊢
∀
x
∈
suc
m
a
x
=
b
x
↔
∀
x
∈
m
∪
m
a
x
=
b
x
195
ralunb
⊢
∀
x
∈
m
∪
m
a
x
=
b
x
↔
∀
x
∈
m
a
x
=
b
x
∧
∀
x
∈
m
a
x
=
b
x
196
194
195
bitri
⊢
∀
x
∈
suc
m
a
x
=
b
x
↔
∀
x
∈
m
a
x
=
b
x
∧
∀
x
∈
m
a
x
=
b
x
197
192
196
bitrdi
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
a
=
b
↔
∀
x
∈
m
a
x
=
b
x
∧
∀
x
∈
m
a
x
=
b
x
198
131
190
197
3bitr4d
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
a
=
G
suc
m
b
↔
a
=
b
199
198
biimpd
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
∧
a
∈
A
suc
m
∧
b
∈
A
suc
m
→
G
suc
m
a
=
G
suc
m
b
→
a
=
b
200
199
ralrimivva
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
→
∀
a
∈
A
suc
m
∀
b
∈
A
suc
m
G
suc
m
a
=
G
suc
m
b
→
a
=
b
201
dff13
⊢
G
suc
m
:
A
suc
m
⟶
1-1
A
↔
G
suc
m
:
A
suc
m
⟶
A
∧
∀
a
∈
A
suc
m
∀
b
∈
A
suc
m
G
suc
m
a
=
G
suc
m
b
→
a
=
b
202
115
200
201
sylanbrc
ω
⊢
φ
∧
m
∈
ω
∧
G
m
:
A
m
⟶
1-1
A
→
G
suc
m
:
A
suc
m
⟶
1-1
A
203
202
expr
ω
⊢
φ
∧
m
∈
ω
→
G
m
:
A
m
⟶
1-1
A
→
G
suc
m
:
A
suc
m
⟶
1-1
A
204
203
expcom
ω
⊢
m
∈
ω
→
φ
→
G
m
:
A
m
⟶
1-1
A
→
G
suc
m
:
A
suc
m
⟶
1-1
A
205
23
30
37
52
204
finds2
ω
⊢
y
∈
ω
→
φ
→
G
y
:
A
y
⟶
1-1
A
206
12
205
vtoclga
ω
⊢
C
∈
ω
→
φ
→
G
C
:
A
C
⟶
1-1
A
207
206
impcom
ω
⊢
φ
∧
C
∈
ω
→
G
C
:
A
C
⟶
1-1
A