Metamath Proof Explorer


Theorem gg-reparphti

Description: Lemma for reparpht . (Contributed by NM, 15-Jun-2010) (Revised by Mario Carneiro, 7-Jun-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-reparpht.2 φFIICnJ
gg-reparpht.3 φGIICnII
gg-reparpht.4 φG0=0
gg-reparpht.5 φG1=1
gg-reparphti.6 H=x01,y01F1yGx+yx
Assertion gg-reparphti φHFGPHtpyJF

Proof

Step Hyp Ref Expression
1 gg-reparpht.2 φFIICnJ
2 gg-reparpht.3 φGIICnII
3 gg-reparpht.4 φG0=0
4 gg-reparpht.5 φG1=1
5 gg-reparphti.6 H=x01,y01F1yGx+yx
6 cnco GIICnIIFIICnJFGIICnJ
7 2 1 6 syl2anc φFGIICnJ
8 iitopon IITopOn01
9 8 a1i φIITopOn01
10 eqid TopOpenfld=TopOpenfld
11 10 cnfldtop TopOpenfldTop
12 cnrest2r TopOpenfldTopII×tIICnTopOpenfld𝑡01II×tIICnTopOpenfld
13 11 12 mp1i φII×tIICnTopOpenfld𝑡01II×tIICnTopOpenfld
14 9 9 cnmpt2nd φx01,y01yII×tIICnII
15 iirevcn z011zIICnII
16 15 a1i φz011zIICnII
17 oveq2 z=y1z=1y
18 9 9 14 9 16 17 cnmpt21 φx01,y011yII×tIICnII
19 10 dfii3 II=TopOpenfld𝑡01
20 19 oveq2i II×tIICnII=II×tIICnTopOpenfld𝑡01
21 18 20 eleqtrdi φx01,y011yII×tIICnTopOpenfld𝑡01
22 13 21 sseldd φx01,y011yII×tIICnTopOpenfld
23 9 9 cnmpt1st φx01,y01xII×tIICnII
24 9 9 23 2 cnmpt21f φx01,y01GxII×tIICnII
25 24 20 eleqtrdi φx01,y01GxII×tIICnTopOpenfld𝑡01
26 13 25 sseldd φx01,y01GxII×tIICnTopOpenfld
27 10 cnfldtopon TopOpenfldTopOn
28 27 a1i φTopOpenfldTopOn
29 10 mpomulcn u,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
30 29 a1i φu,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
31 oveq12 u=1yv=Gxuv=1yGx
32 9 9 22 26 28 28 30 31 cnmpt22 φx01,y011yGxII×tIICnTopOpenfld
33 11 12 ax-mp II×tIICnTopOpenfld𝑡01II×tIICnTopOpenfld
34 20 33 eqsstri II×tIICnIIII×tIICnTopOpenfld
35 34 14 sselid φx01,y01yII×tIICnTopOpenfld
36 34 23 sselid φx01,y01xII×tIICnTopOpenfld
37 oveq12 u=yv=xuv=yx
38 9 9 35 36 28 28 30 37 cnmpt22 φx01,y01yxII×tIICnTopOpenfld
39 10 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
40 39 a1i φ+TopOpenfld×tTopOpenfldCnTopOpenfld
41 9 9 32 38 40 cnmpt22f φx01,y011yGx+yxII×tIICnTopOpenfld
42 iiuni 01=II
43 42 42 cnf GIICnIIG:0101
44 2 43 syl φG:0101
45 44 ffvelcdmda φx01Gx01
46 45 adantrr φx01y01Gx01
47 simprl φx01y01x01
48 simprr φx01y01y01
49 0re 0
50 1re 1
51 icccvx 01Gx01x01y011yGx+yx01
52 49 50 51 mp2an Gx01x01y011yGx+yx01
53 46 47 48 52 syl3anc φx01y011yGx+yx01
54 53 ralrimivva φx01y011yGx+yx01
55 eqid x01,y011yGx+yx=x01,y011yGx+yx
56 55 fmpo x01y011yGx+yx01x01,y011yGx+yx:01×0101
57 54 56 sylib φx01,y011yGx+yx:01×0101
58 57 frnd φranx01,y011yGx+yx01
59 unitsscn 01
60 59 a1i φ01
61 cnrest2 TopOpenfldTopOnranx01,y011yGx+yx0101x01,y011yGx+yxII×tIICnTopOpenfldx01,y011yGx+yxII×tIICnTopOpenfld𝑡01
62 28 58 60 61 syl3anc φx01,y011yGx+yxII×tIICnTopOpenfldx01,y011yGx+yxII×tIICnTopOpenfld𝑡01
63 41 62 mpbid φx01,y011yGx+yxII×tIICnTopOpenfld𝑡01
64 63 20 eleqtrrdi φx01,y011yGx+yxII×tIICnII
65 9 9 64 1 cnmpt21f φx01,y01F1yGx+yxII×tIICnJ
66 5 65 eqeltrid φHII×tIICnJ
67 44 ffvelcdmda φs01Gs01
68 59 67 sselid φs01Gs
69 68 mullidd φs011Gs=Gs
70 elunitcn s01s
71 70 adantl φs01s
72 71 mul02d φs010s=0
73 69 72 oveq12d φs011Gs+0s=Gs+0
74 68 addridd φs01Gs+0=Gs
75 73 74 eqtrd φs011Gs+0s=Gs
76 75 fveq2d φs01F1Gs+0s=FGs
77 simpr φs01s01
78 0elunit 001
79 simpr x=sy=0y=0
80 79 oveq2d x=sy=01y=10
81 1m0e1 10=1
82 80 81 eqtrdi x=sy=01y=1
83 simpl x=sy=0x=s
84 83 fveq2d x=sy=0Gx=Gs
85 82 84 oveq12d x=sy=01yGx=1Gs
86 79 83 oveq12d x=sy=0yx=0s
87 85 86 oveq12d x=sy=01yGx+yx=1Gs+0s
88 87 fveq2d x=sy=0F1yGx+yx=F1Gs+0s
89 fvex F1Gs+0sV
90 88 5 89 ovmpoa s01001sH0=F1Gs+0s
91 77 78 90 sylancl φs01sH0=F1Gs+0s
92 fvco3 G:0101s01FGs=FGs
93 44 92 sylan φs01FGs=FGs
94 76 91 93 3eqtr4d φs01sH0=FGs
95 1elunit 101
96 simpr x=sy=1y=1
97 96 oveq2d x=sy=11y=11
98 1m1e0 11=0
99 97 98 eqtrdi x=sy=11y=0
100 simpl x=sy=1x=s
101 100 fveq2d x=sy=1Gx=Gs
102 99 101 oveq12d x=sy=11yGx=0Gs
103 96 100 oveq12d x=sy=1yx=1s
104 102 103 oveq12d x=sy=11yGx+yx=0Gs+1s
105 104 fveq2d x=sy=1F1yGx+yx=F0Gs+1s
106 fvex F0Gs+1sV
107 105 5 106 ovmpoa s01101sH1=F0Gs+1s
108 77 95 107 sylancl φs01sH1=F0Gs+1s
109 68 mul02d φs010Gs=0
110 71 mullidd φs011s=s
111 109 110 oveq12d φs010Gs+1s=0+s
112 71 addlidd φs010+s=s
113 111 112 eqtrd φs010Gs+1s=s
114 113 fveq2d φs01F0Gs+1s=Fs
115 108 114 eqtrd φs01sH1=Fs
116 3 adantr φs01G0=0
117 116 oveq2d φs011sG0=1s0
118 ax-1cn 1
119 subcl 1s1s
120 118 71 119 sylancr φs011s
121 120 mul01d φs011s0=0
122 117 121 eqtrd φs011sG0=0
123 71 mul01d φs01s0=0
124 122 123 oveq12d φs011sG0+s0=0+0
125 00id 0+0=0
126 124 125 eqtrdi φs011sG0+s0=0
127 126 fveq2d φs01F1sG0+s0=F0
128 simpr x=0y=sy=s
129 128 oveq2d x=0y=s1y=1s
130 simpl x=0y=sx=0
131 130 fveq2d x=0y=sGx=G0
132 129 131 oveq12d x=0y=s1yGx=1sG0
133 128 130 oveq12d x=0y=syx=s0
134 132 133 oveq12d x=0y=s1yGx+yx=1sG0+s0
135 134 fveq2d x=0y=sF1yGx+yx=F1sG0+s0
136 fvex F1sG0+s0V
137 135 5 136 ovmpoa 001s010Hs=F1sG0+s0
138 78 77 137 sylancr φs010Hs=F1sG0+s0
139 fvco3 G:0101001FG0=FG0
140 44 78 139 sylancl φFG0=FG0
141 3 fveq2d φFG0=F0
142 140 141 eqtrd φFG0=F0
143 142 adantr φs01FG0=F0
144 127 138 143 3eqtr4d φs010Hs=FG0
145 4 adantr φs01G1=1
146 145 oveq2d φs011sG1=1s1
147 120 mulridd φs011s1=1s
148 146 147 eqtrd φs011sG1=1s
149 71 mulridd φs01s1=s
150 148 149 oveq12d φs011sG1+s1=1-s+s
151 npcan 1s1-s+s=1
152 118 71 151 sylancr φs011-s+s=1
153 150 152 eqtrd φs011sG1+s1=1
154 153 fveq2d φs01F1sG1+s1=F1
155 simpr x=1y=sy=s
156 155 oveq2d x=1y=s1y=1s
157 simpl x=1y=sx=1
158 157 fveq2d x=1y=sGx=G1
159 156 158 oveq12d x=1y=s1yGx=1sG1
160 155 157 oveq12d x=1y=syx=s1
161 159 160 oveq12d x=1y=s1yGx+yx=1sG1+s1
162 161 fveq2d x=1y=sF1yGx+yx=F1sG1+s1
163 fvex F1sG1+s1V
164 162 5 163 ovmpoa 101s011Hs=F1sG1+s1
165 95 77 164 sylancr φs011Hs=F1sG1+s1
166 fvco3 G:0101101FG1=FG1
167 44 95 166 sylancl φFG1=FG1
168 4 fveq2d φFG1=F1
169 167 168 eqtrd φFG1=F1
170 169 adantr φs01FG1=F1
171 154 165 170 3eqtr4d φs011Hs=FG1
172 7 1 66 94 115 144 171 isphtpy2d φHFGPHtpyJF