Metamath Proof Explorer


Theorem imasf1oxms

Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses imasf1obl.u φU=F𝑠R
imasf1obl.v φV=BaseR
imasf1obl.f φF:V1-1 ontoB
imasf1oxms.r φR∞MetSp
Assertion imasf1oxms φU∞MetSp

Proof

Step Hyp Ref Expression
1 imasf1obl.u φU=F𝑠R
2 imasf1obl.v φV=BaseR
3 imasf1obl.f φF:V1-1 ontoB
4 imasf1oxms.r φR∞MetSp
5 eqid distRV×V=distRV×V
6 eqid distU=distU
7 eqid BaseR=BaseR
8 eqid distRBaseR×BaseR=distRBaseR×BaseR
9 7 8 xmsxmet R∞MetSpdistRBaseR×BaseR∞MetBaseR
10 4 9 syl φdistRBaseR×BaseR∞MetBaseR
11 2 sqxpeqd φV×V=BaseR×BaseR
12 11 reseq2d φdistRV×V=distRBaseR×BaseR
13 2 fveq2d φ∞MetV=∞MetBaseR
14 10 12 13 3eltr4d φdistRV×V∞MetV
15 1 2 3 4 5 6 14 imasf1oxmet φdistU∞MetB
16 f1ofo F:V1-1 ontoBF:VontoB
17 3 16 syl φF:VontoB
18 1 2 17 4 imasbas φB=BaseU
19 18 fveq2d φ∞MetB=∞MetBaseU
20 15 19 eleqtrd φdistU∞MetBaseU
21 ssid BaseUBaseU
22 xmetres2 distU∞MetBaseUBaseUBaseUdistUBaseU×BaseU∞MetBaseU
23 20 21 22 sylancl φdistUBaseU×BaseU∞MetBaseU
24 eqid TopOpenR=TopOpenR
25 eqid TopOpenU=TopOpenU
26 1 2 17 4 24 25 imastopn φTopOpenU=TopOpenRqTopF
27 24 7 8 xmstopn R∞MetSpTopOpenR=MetOpendistRBaseR×BaseR
28 4 27 syl φTopOpenR=MetOpendistRBaseR×BaseR
29 12 fveq2d φMetOpendistRV×V=MetOpendistRBaseR×BaseR
30 28 29 eqtr4d φTopOpenR=MetOpendistRV×V
31 30 oveq1d φTopOpenRqTopF=MetOpendistRV×VqTopF
32 blbas distRV×V∞MetVranballdistRV×VTopBases
33 14 32 syl φranballdistRV×VTopBases
34 unirnbl distRV×V∞MetVranballdistRV×V=V
35 f1oeq2 ranballdistRV×V=VF:ranballdistRV×V1-1 ontoBF:V1-1 ontoB
36 14 34 35 3syl φF:ranballdistRV×V1-1 ontoBF:V1-1 ontoB
37 3 36 mpbird φF:ranballdistRV×V1-1 ontoB
38 eqid ranballdistRV×V=ranballdistRV×V
39 38 tgqtop ranballdistRV×VTopBasesF:ranballdistRV×V1-1 ontoBtopGenranballdistRV×VqTopF=topGenranballdistRV×VqTopF
40 33 37 39 syl2anc φtopGenranballdistRV×VqTopF=topGenranballdistRV×VqTopF
41 eqid MetOpendistRV×V=MetOpendistRV×V
42 41 mopnval distRV×V∞MetVMetOpendistRV×V=topGenranballdistRV×V
43 14 42 syl φMetOpendistRV×V=topGenranballdistRV×V
44 43 oveq1d φMetOpendistRV×VqTopF=topGenranballdistRV×VqTopF
45 eqid MetOpendistU=MetOpendistU
46 45 mopnval distU∞MetBMetOpendistU=topGenranballdistU
47 15 46 syl φMetOpendistU=topGenranballdistU
48 xmetf distU∞MetBaseUdistU:BaseU×BaseU*
49 20 48 syl φdistU:BaseU×BaseU*
50 ffn distU:BaseU×BaseU*distUFnBaseU×BaseU
51 fnresdm distUFnBaseU×BaseUdistUBaseU×BaseU=distU
52 49 50 51 3syl φdistUBaseU×BaseU=distU
53 52 fveq2d φMetOpendistUBaseU×BaseU=MetOpendistU
54 3 ad2antrr φxByVr*F:V1-1 ontoB
55 f1of1 F:V1-1 ontoBF:V1-1B
56 54 55 syl φxByVr*F:V1-1B
57 cnvimass F-1xdomF
58 f1odm F:V1-1 ontoBdomF=V
59 54 58 syl φxByVr*domF=V
60 57 59 sseqtrid φxByVr*F-1xV
61 14 ad2antrr φxByVr*distRV×V∞MetV
62 simprl φxByVr*yV
63 simprr φxByVr*r*
64 blssm distRV×V∞MetVyVr*yballdistRV×VrV
65 61 62 63 64 syl3anc φxByVr*yballdistRV×VrV
66 f1imaeq F:V1-1BF-1xVyballdistRV×VrVFF-1x=FyballdistRV×VrF-1x=yballdistRV×Vr
67 56 60 65 66 syl12anc φxByVr*FF-1x=FyballdistRV×VrF-1x=yballdistRV×Vr
68 54 16 syl φxByVr*F:VontoB
69 simplr φxByVr*xB
70 foimacnv F:VontoBxBFF-1x=x
71 68 69 70 syl2anc φxByVr*FF-1x=x
72 1 ad2antrr φxByVr*U=F𝑠R
73 2 ad2antrr φxByVr*V=BaseR
74 4 ad2antrr φxByVr*R∞MetSp
75 72 73 54 74 5 6 61 62 63 imasf1obl φxByVr*FyballdistUr=FyballdistRV×Vr
76 75 eqcomd φxByVr*FyballdistRV×Vr=FyballdistUr
77 71 76 eqeq12d φxByVr*FF-1x=FyballdistRV×Vrx=FyballdistUr
78 67 77 bitr3d φxByVr*F-1x=yballdistRV×Vrx=FyballdistUr
79 78 2rexbidva φxByVr*F-1x=yballdistRV×VryVr*x=FyballdistUr
80 3 adantr φxBF:V1-1 ontoB
81 f1ofn F:V1-1 ontoBFFnV
82 oveq1 z=FyzballdistUr=FyballdistUr
83 82 eqeq2d z=Fyx=zballdistUrx=FyballdistUr
84 83 rexbidv z=Fyr*x=zballdistUrr*x=FyballdistUr
85 84 rexrn FFnVzranFr*x=zballdistUryVr*x=FyballdistUr
86 80 81 85 3syl φxBzranFr*x=zballdistUryVr*x=FyballdistUr
87 forn F:VontoBranF=B
88 80 16 87 3syl φxBranF=B
89 88 rexeqdv φxBzranFr*x=zballdistUrzBr*x=zballdistUr
90 79 86 89 3bitr2d φxByVr*F-1x=yballdistRV×VrzBr*x=zballdistUr
91 14 adantr φxBdistRV×V∞MetV
92 blrn distRV×V∞MetVF-1xranballdistRV×VyVr*F-1x=yballdistRV×Vr
93 91 92 syl φxBF-1xranballdistRV×VyVr*F-1x=yballdistRV×Vr
94 15 adantr φxBdistU∞MetB
95 blrn distU∞MetBxranballdistUzBr*x=zballdistUr
96 94 95 syl φxBxranballdistUzBr*x=zballdistUr
97 90 93 96 3bitr4d φxBF-1xranballdistRV×VxranballdistU
98 97 pm5.32da φxBF-1xranballdistRV×VxBxranballdistU
99 f1ofo F:ranballdistRV×V1-1 ontoBF:ranballdistRV×VontoB
100 37 99 syl φF:ranballdistRV×VontoB
101 38 elqtop2 ranballdistRV×VTopBasesF:ranballdistRV×VontoBxranballdistRV×VqTopFxBF-1xranballdistRV×V
102 33 100 101 syl2anc φxranballdistRV×VqTopFxBF-1xranballdistRV×V
103 blf distU∞MetBballdistU:B×*𝒫B
104 frn balldistU:B×*𝒫BranballdistU𝒫B
105 15 103 104 3syl φranballdistU𝒫B
106 105 sseld φxranballdistUx𝒫B
107 elpwi x𝒫BxB
108 106 107 syl6 φxranballdistUxB
109 108 pm4.71rd φxranballdistUxBxranballdistU
110 98 102 109 3bitr4d φxranballdistRV×VqTopFxranballdistU
111 110 eqrdv φranballdistRV×VqTopF=ranballdistU
112 111 fveq2d φtopGenranballdistRV×VqTopF=topGenranballdistU
113 47 53 112 3eqtr4d φMetOpendistUBaseU×BaseU=topGenranballdistRV×VqTopF
114 40 44 113 3eqtr4d φMetOpendistRV×VqTopF=MetOpendistUBaseU×BaseU
115 26 31 114 3eqtrd φTopOpenU=MetOpendistUBaseU×BaseU
116 eqid BaseU=BaseU
117 eqid distUBaseU×BaseU=distUBaseU×BaseU
118 25 116 117 isxms2 U∞MetSpdistUBaseU×BaseU∞MetBaseUTopOpenU=MetOpendistUBaseU×BaseU
119 23 115 118 sylanbrc φU∞MetSp