Metamath Proof Explorer


Theorem isercoll2

Description: Generalize isercoll so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses isercoll2.z Z=M
isercoll2.w W=N
isercoll2.m φM
isercoll2.n φN
isercoll2.g φG:ZW
isercoll2.i φkZGk<Gk+1
isercoll2.0 φnWranGFn=0
isercoll2.f φnWFn
isercoll2.h φkZHk=FGk
Assertion isercoll2 φseqM+HAseqN+FA

Proof

Step Hyp Ref Expression
1 isercoll2.z Z=M
2 isercoll2.w W=N
3 isercoll2.m φM
4 isercoll2.n φN
5 isercoll2.g φG:ZW
6 isercoll2.i φkZGk<Gk+1
7 isercoll2.0 φnWranGFn=0
8 isercoll2.f φnWFn
9 isercoll2.h φkZHk=FGk
10 1z 1
11 zsubcl 1M1M
12 10 3 11 sylancr φ1M
13 seqex seqM+HV
14 13 a1i φseqM+HV
15 seqex seq1+xHM+x-1V
16 15 a1i φseq1+xHM+x-1V
17 simpr φkZkZ
18 17 1 eleqtrdi φkZkM
19 12 adantr φkZ1M
20 simpl φkZφ
21 elfzuz jMkjM
22 21 1 eleqtrrdi jMkjZ
23 simpr φjZjZ
24 23 1 eleqtrdi φjZjM
25 eluzelz jMj
26 24 25 syl φjZj
27 26 zcnd φjZj
28 3 zcnd φM
29 28 adantr φjZM
30 1cnd φjZ1
31 27 29 30 subadd23d φjZj-M+1=j+1-M
32 uznn0sub jMjM0
33 24 32 syl φjZjM0
34 nn0p1nn jM0j-M+1
35 33 34 syl φjZj-M+1
36 31 35 eqeltrrd φjZj+1-M
37 oveq1 x=j+1-Mx1=j+1M-1
38 37 oveq2d x=j+1-MM+x-1=M+j+1-M-1
39 38 fveq2d x=j+1-MHM+x-1=HM+j+1-M-1
40 eqid xHM+x-1=xHM+x-1
41 fvex HM+j+1-M-1V
42 39 40 41 fvmpt j+1-MxHM+x-1j+1-M=HM+j+1-M-1
43 36 42 syl φjZxHM+x-1j+1-M=HM+j+1-M-1
44 31 oveq1d φjZjM+1-1=j+1M-1
45 33 nn0cnd φjZjM
46 ax-1cn 1
47 pncan jM1jM+1-1=jM
48 45 46 47 sylancl φjZjM+1-1=jM
49 44 48 eqtr3d φjZj+1M-1=jM
50 49 oveq2d φjZM+j+1-M-1=M+j-M
51 29 27 pncan3d φjZM+j-M=j
52 50 51 eqtrd φjZM+j+1-M-1=j
53 52 fveq2d φjZHM+j+1-M-1=Hj
54 43 53 eqtr2d φjZHj=xHM+x-1j+1-M
55 20 22 54 syl2an φkZjMkHj=xHM+x-1j+1-M
56 18 19 55 seqshft2 φkZseqM+Hk=seqM+1-M+xHM+x-1k+1-M
57 28 adantr φkZM
58 pncan3 M1M+1-M=1
59 57 46 58 sylancl φkZM+1-M=1
60 59 seqeq1d φkZseqM+1-M+xHM+x-1=seq1+xHM+x-1
61 60 fveq1d φkZseqM+1-M+xHM+x-1k+1-M=seq1+xHM+x-1k+1-M
62 56 61 eqtr2d φkZseq1+xHM+x-1k+1-M=seqM+Hk
63 1 3 12 14 16 62 climshft2 φseqM+HAseq1+xHM+x-1A
64 5 adantr φxG:ZW
65 uzid MMM
66 3 65 syl φMM
67 nnm1nn0 xx10
68 uzaddcl MMx10M+x-1M
69 66 67 68 syl2an φxM+x-1M
70 69 1 eleqtrrdi φxM+x-1Z
71 64 70 ffvelcdmd φxGM+x-1W
72 71 fmpttd φxGM+x-1:W
73 fveq2 k=M+j-1Gk=GM+j-1
74 fvoveq1 k=M+j-1Gk+1=GM+j1+1
75 73 74 breq12d k=M+j-1Gk<Gk+1GM+j-1<GM+j1+1
76 6 ralrimiva φkZGk<Gk+1
77 76 adantr φjkZGk<Gk+1
78 nnm1nn0 jj10
79 uzaddcl MMj10M+j-1M
80 66 78 79 syl2an φjM+j-1M
81 80 1 eleqtrrdi φjM+j-1Z
82 75 77 81 rspcdva φjGM+j-1<GM+j1+1
83 nncn jj
84 83 adantl φjj
85 1cnd φj1
86 84 85 85 addsubd φjj+1-1=j-1+1
87 86 oveq2d φjM+j+1-1=M+j1+1
88 28 adantr φjM
89 78 adantl φjj10
90 89 nn0cnd φjj1
91 88 90 85 addassd φjM+j1+1=M+j1+1
92 87 91 eqtr4d φjM+j+1-1=M+j1+1
93 92 fveq2d φjGM+j+1-1=GM+j1+1
94 82 93 breqtrrd φjGM+j-1<GM+j+1-1
95 oveq1 x=jx1=j1
96 95 oveq2d x=jM+x-1=M+j-1
97 96 fveq2d x=jGM+x-1=GM+j-1
98 eqid xGM+x-1=xGM+x-1
99 fvex GM+j-1V
100 97 98 99 fvmpt jxGM+x-1j=GM+j-1
101 100 adantl φjxGM+x-1j=GM+j-1
102 peano2nn jj+1
103 102 adantl φjj+1
104 oveq1 x=j+1x1=j+1-1
105 104 oveq2d x=j+1M+x-1=M+j+1-1
106 105 fveq2d x=j+1GM+x-1=GM+j+1-1
107 fvex GM+j+1-1V
108 106 98 107 fvmpt j+1xGM+x-1j+1=GM+j+1-1
109 103 108 syl φjxGM+x-1j+1=GM+j+1-1
110 94 101 109 3brtr4d φjxGM+x-1j<xGM+x-1j+1
111 5 ffnd φGFnZ
112 uznn0sub kMkM0
113 18 112 syl φkZkM0
114 nn0p1nn kM0k-M+1
115 113 114 syl φkZk-M+1
116 113 nn0cnd φkZkM
117 pncan kM1kM+1-1=kM
118 116 46 117 sylancl φkZkM+1-1=kM
119 118 oveq2d φkZM+k-M+1-1=M+k-M
120 eluzelz kMk
121 120 1 eleq2s kZk
122 121 zcnd kZk
123 pncan3 MkM+k-M=k
124 28 122 123 syl2an φkZM+k-M=k
125 119 124 eqtr2d φkZk=M+k-M+1-1
126 125 fveq2d φkZGk=GM+k-M+1-1
127 oveq1 x=k-M+1x1=kM+1-1
128 127 oveq2d x=k-M+1M+x-1=M+k-M+1-1
129 128 fveq2d x=k-M+1GM+x-1=GM+k-M+1-1
130 129 rspceeqv k-M+1Gk=GM+k-M+1-1xGk=GM+x-1
131 115 126 130 syl2anc φkZxGk=GM+x-1
132 fvex GkV
133 98 elrnmpt GkVGkranxGM+x-1xGk=GM+x-1
134 132 133 ax-mp GkranxGM+x-1xGk=GM+x-1
135 131 134 sylibr φkZGkranxGM+x-1
136 135 ralrimiva φkZGkranxGM+x-1
137 ffnfv G:ZranxGM+x-1GFnZkZGkranxGM+x-1
138 111 136 137 sylanbrc φG:ZranxGM+x-1
139 138 frnd φranGranxGM+x-1
140 139 sscond φWranxGM+x-1WranG
141 140 sselda φnWranxGM+x-1nWranG
142 141 7 syldan φnWranxGM+x-1Fn=0
143 fveq2 k=M+j-1Hk=HM+j-1
144 73 fveq2d k=M+j-1FGk=FGM+j-1
145 143 144 eqeq12d k=M+j-1Hk=FGkHM+j-1=FGM+j-1
146 9 ralrimiva φkZHk=FGk
147 146 adantr φjkZHk=FGk
148 145 147 81 rspcdva φjHM+j-1=FGM+j-1
149 96 fveq2d x=jHM+x-1=HM+j-1
150 fvex HM+j-1V
151 149 40 150 fvmpt jxHM+x-1j=HM+j-1
152 151 adantl φjxHM+x-1j=HM+j-1
153 101 fveq2d φjFxGM+x-1j=FGM+j-1
154 148 152 153 3eqtr4d φjxHM+x-1j=FxGM+x-1j
155 2 4 72 110 142 8 154 isercoll φseq1+xHM+x-1AseqN+FA
156 63 155 bitrd φseqM+HAseqN+FA