Metamath Proof Explorer


Theorem iserodd

Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Hypotheses iserodd.f φk0C
iserodd.h n=2k+1B=C
Assertion iserodd φseq0+k0CAseq1+nif2n0BA

Proof

Step Hyp Ref Expression
1 iserodd.f φk0C
2 iserodd.h n=2k+1B=C
3 nn0uz 0=0
4 nnuz =1
5 0zd φ0
6 1zzd φ1
7 2nn0 20
8 7 a1i φ20
9 nn0mulcl 20m02m0
10 8 9 sylan φm02m0
11 nn0p1nn 2m02m+1
12 10 11 syl φm02m+1
13 12 fmpttd φm02m+1:0
14 nn0mulcl 20i02i0
15 8 14 sylan φi02i0
16 15 nn0red φi02i
17 peano2nn0 i0i+10
18 nn0mulcl 20i+102i+10
19 8 17 18 syl2an φi02i+10
20 19 nn0red φi02i+1
21 1red φi01
22 nn0re i0i
23 22 adantl φi0i
24 23 ltp1d φi0i<i+1
25 1red i01
26 22 25 readdcld i0i+1
27 2rp 2+
28 27 a1i i02+
29 22 26 28 ltmul2d i0i<i+12i<2i+1
30 29 adantl φi0i<i+12i<2i+1
31 24 30 mpbid φi02i<2i+1
32 16 20 21 31 ltadd1dd φi02i+1<2i+1+1
33 oveq2 m=i2m=2i
34 33 oveq1d m=i2m+1=2i+1
35 eqid m02m+1=m02m+1
36 ovex 2i+1V
37 34 35 36 fvmpt i0m02m+1i=2i+1
38 37 adantl φi0m02m+1i=2i+1
39 17 adantl φi0i+10
40 oveq2 m=i+12m=2i+1
41 40 oveq1d m=i+12m+1=2i+1+1
42 ovex 2i+1+1V
43 41 35 42 fvmpt i+10m02m+1i+1=2i+1+1
44 39 43 syl φi0m02m+1i+1=2i+1+1
45 32 38 44 3brtr4d φi0m02m+1i<m02m+1i+1
46 eldifi nranm02m+1n
47 simpr φnn
48 0cnd φn2n0
49 nnz nn
50 49 adantl φnn
51 odd2np1 n¬2nk2k+1=n
52 50 51 syl φn¬2nk2k+1=n
53 simprl φnk2k+1=nk
54 nnm1nn0 nn10
55 54 ad2antlr φnk2k+1=nn10
56 55 nn0red φnk2k+1=nn1
57 27 a1i φnk2k+1=n2+
58 55 nn0ge0d φnk2k+1=n0n1
59 56 57 58 divge0d φnk2k+1=n0n12
60 simprr φnk2k+1=n2k+1=n
61 60 oveq1d φnk2k+1=n2k+1-1=n1
62 2cn 2
63 zcn kk
64 63 ad2antrl φnk2k+1=nk
65 mulcl 2k2k
66 62 64 65 sylancr φnk2k+1=n2k
67 ax-1cn 1
68 pncan 2k12k+1-1=2k
69 66 67 68 sylancl φnk2k+1=n2k+1-1=2k
70 61 69 eqtr3d φnk2k+1=nn1=2k
71 70 oveq1d φnk2k+1=nn12=2k2
72 2cnd φnk2k+1=n2
73 2ne0 20
74 73 a1i φnk2k+1=n20
75 64 72 74 divcan3d φnk2k+1=n2k2=k
76 71 75 eqtrd φnk2k+1=nn12=k
77 59 76 breqtrd φnk2k+1=n0k
78 elnn0z k0k0k
79 53 77 78 sylanbrc φnk2k+1=nk0
80 79 ex φnk2k+1=nk0
81 simpr k2k+1=n2k+1=n
82 81 eqcomd k2k+1=nn=2k+1
83 80 82 jca2 φnk2k+1=nk0n=2k+1
84 83 reximdv2 φnk2k+1=nk0n=2k+1
85 52 84 sylbid φn¬2nk0n=2k+1
86 2 eleq1d n=2k+1BC
87 1 86 syl5ibrcom φk0n=2k+1B
88 87 rexlimdva φk0n=2k+1B
89 88 adantr φnk0n=2k+1B
90 85 89 syld φn¬2nB
91 90 imp φn¬2nB
92 48 91 ifclda φnif2n0B
93 eqid nif2n0B=nif2n0B
94 93 fvmpt2 nif2n0Bnif2n0Bn=if2n0B
95 47 92 94 syl2anc φnnif2n0Bn=if2n0B
96 46 95 sylan2 φnranm02m+1nif2n0Bn=if2n0B
97 eldif nranm02m+1n¬nranm02m+1
98 oveq2 m=k2m=2k
99 98 oveq1d m=k2m+1=2k+1
100 99 cbvmptv m02m+1=k02k+1
101 100 elrnmpt nVnranm02m+1k0n=2k+1
102 101 elv nranm02m+1k0n=2k+1
103 85 102 syl6ibr φn¬2nnranm02m+1
104 103 con1d φn¬nranm02m+12n
105 104 impr φn¬nranm02m+12n
106 97 105 sylan2b φnranm02m+12n
107 106 iftrued φnranm02m+1if2n0B=0
108 96 107 eqtrd φnranm02m+1nif2n0Bn=0
109 108 ralrimiva φnranm02m+1nif2n0Bn=0
110 nfv jnif2n0Bn=0
111 nffvmpt1 _nnif2n0Bj
112 111 nfeq1 nnif2n0Bj=0
113 fveqeq2 n=jnif2n0Bn=0nif2n0Bj=0
114 110 112 113 cbvralw nranm02m+1nif2n0Bn=0jranm02m+1nif2n0Bj=0
115 109 114 sylib φjranm02m+1nif2n0Bj=0
116 115 r19.21bi φjranm02m+1nif2n0Bj=0
117 92 fmpttd φnif2n0B:
118 117 ffvelcdmda φjnif2n0Bj
119 simpr φk0k0
120 eqid k0C=k0C
121 120 fvmpt2 k0Ck0Ck=C
122 119 1 121 syl2anc φk0k0Ck=C
123 ovex 2k+1V
124 99 35 123 fvmpt k0m02m+1k=2k+1
125 124 adantl φk0m02m+1k=2k+1
126 125 fveq2d φk0nif2n0Bm02m+1k=nif2n0B2k+1
127 breq2 n=2k+12n22k+1
128 127 2 ifbieq2d n=2k+1if2n0B=if22k+10C
129 nn0mulcl 20k02k0
130 8 129 sylan φk02k0
131 nn0p1nn 2k02k+1
132 130 131 syl φk02k+1
133 2z 2
134 nn0z k0k
135 134 adantl φk0k
136 dvdsmul1 2k22k
137 133 135 136 sylancr φk022k
138 130 nn0zd φk02k
139 2nn 2
140 139 a1i φk02
141 1lt2 1<2
142 141 a1i φk01<2
143 ndvdsp1 2k21<222k¬22k+1
144 138 140 142 143 syl3anc φk022k¬22k+1
145 137 144 mpd φk0¬22k+1
146 145 iffalsed φk0if22k+10C=C
147 146 1 eqeltrd φk0if22k+10C
148 93 128 132 147 fvmptd3 φk0nif2n0B2k+1=if22k+10C
149 126 148 146 3eqtrd φk0nif2n0Bm02m+1k=C
150 122 149 eqtr4d φk0k0Ck=nif2n0Bm02m+1k
151 150 ralrimiva φk0k0Ck=nif2n0Bm02m+1k
152 nfv ik0Ck=nif2n0Bm02m+1k
153 nffvmpt1 _kk0Ci
154 153 nfeq1 kk0Ci=nif2n0Bm02m+1i
155 fveq2 k=ik0Ck=k0Ci
156 2fveq3 k=inif2n0Bm02m+1k=nif2n0Bm02m+1i
157 155 156 eqeq12d k=ik0Ck=nif2n0Bm02m+1kk0Ci=nif2n0Bm02m+1i
158 152 154 157 cbvralw k0k0Ck=nif2n0Bm02m+1ki0k0Ci=nif2n0Bm02m+1i
159 151 158 sylib φi0k0Ci=nif2n0Bm02m+1i
160 159 r19.21bi φi0k0Ci=nif2n0Bm02m+1i
161 3 4 5 6 13 45 116 118 160 isercoll2 φseq0+k0CAseq1+nif2n0BA