Metamath Proof Explorer


Theorem itgparts

Description: Integration by parts. If B ( x ) is the derivative of A ( x ) and D ( x ) is the derivative of C ( x ) , and E = ( A x. B ) ( X ) and F = ( A x. B ) ( Y ) , then under suitable integrability and differentiability assumptions, the integral of A x. D from X to Y is equal to F - E minus the integral of B x. C . (Contributed by Mario Carneiro, 3-Sep-2014)

Ref Expression
Hypotheses itgparts.x φX
itgparts.y φY
itgparts.le φXY
itgparts.a φxXYA:XYcn
itgparts.c φxXYC:XYcn
itgparts.b φxXYB:XYcn
itgparts.d φxXYD:XYcn
itgparts.ad φxXYAD𝐿1
itgparts.bc φxXYBC𝐿1
itgparts.da φdxXYAdx=xXYB
itgparts.dc φdxXYCdx=xXYD
itgparts.e φx=XAC=E
itgparts.f φx=YAC=F
Assertion itgparts φXYADdx=F-E-XYBCdx

Proof

Step Hyp Ref Expression
1 itgparts.x φX
2 itgparts.y φY
3 itgparts.le φXY
4 itgparts.a φxXYA:XYcn
5 itgparts.c φxXYC:XYcn
6 itgparts.b φxXYB:XYcn
7 itgparts.d φxXYD:XYcn
8 itgparts.ad φxXYAD𝐿1
9 itgparts.bc φxXYBC𝐿1
10 itgparts.da φdxXYAdx=xXYB
11 itgparts.dc φdxXYCdx=xXYD
12 itgparts.e φx=XAC=E
13 itgparts.f φx=YAC=F
14 cncff xXYB:XYcnxXYB:XY
15 6 14 syl φxXYB:XY
16 15 fvmptelcdm φxXYB
17 ioossicc XYXY
18 17 sseli xXYxXY
19 cncff xXYC:XYcnxXYC:XY
20 5 19 syl φxXYC:XY
21 20 fvmptelcdm φxXYC
22 18 21 sylan2 φxXYC
23 16 22 mulcld φxXYBC
24 23 9 itgcl φXYBCdx
25 cncff xXYA:XYcnxXYA:XY
26 4 25 syl φxXYA:XY
27 26 fvmptelcdm φxXYA
28 18 27 sylan2 φxXYA
29 cncff xXYD:XYcnxXYD:XY
30 7 29 syl φxXYD:XY
31 30 fvmptelcdm φxXYD
32 28 31 mulcld φxXYAD
33 32 8 itgcl φXYADdx
34 24 33 pncan2d φXYBCdx+XYADdx-XYBCdx=XYADdx
35 23 9 32 8 itgadd φXYBC+ADdx=XYBCdx+XYADdx
36 fveq2 x=tdxXYACdxx=dxXYACdxt
37 nfcv _tdxXYACdxx
38 nfcv _x
39 nfcv _xD
40 nfmpt1 _xxXYAC
41 38 39 40 nfov _xdxXYACdx
42 nfcv _xt
43 41 42 nffv _xdxXYACdxt
44 36 37 43 cbvitg XYdxXYACdxxdx=XYdxXYACdxtdt
45 ax-resscn
46 45 a1i φ
47 iccssre XYXY
48 1 2 47 syl2anc φXY
49 27 21 mulcld φxXYAC
50 eqid TopOpenfld=TopOpenfld
51 50 tgioo2 topGenran.=TopOpenfld𝑡
52 iccntr XYinttopGenran.XY=XY
53 1 2 52 syl2anc φinttopGenran.XY=XY
54 46 48 49 51 50 53 dvmptntr φdxXYACdx=dxXYACdx
55 reelprrecn
56 55 a1i φ
57 46 48 27 51 50 53 dvmptntr φdxXYAdx=dxXYAdx
58 57 10 eqtr3d φdxXYAdx=xXYB
59 46 48 21 51 50 53 dvmptntr φdxXYCdx=dxXYCdx
60 59 11 eqtr3d φdxXYCdx=xXYD
61 56 28 16 58 22 31 60 dvmptmul φdxXYACdx=xXYBC+DA
62 31 28 mulcomd φxXYDA=AD
63 62 oveq2d φxXYBC+DA=BC+AD
64 63 mpteq2dva φxXYBC+DA=xXYBC+AD
65 54 61 64 3eqtrd φdxXYACdx=xXYBC+AD
66 50 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
67 66 a1i φ+TopOpenfld×tTopOpenfldCnTopOpenfld
68 resmpt XYXYxXYCXY=xXYC
69 17 68 ax-mp xXYCXY=xXYC
70 rescncf XYXYxXYC:XYcnxXYCXY:XYcn
71 17 5 70 mpsyl φxXYCXY:XYcn
72 69 71 eqeltrrid φxXYC:XYcn
73 6 72 mulcncf φxXYBC:XYcn
74 resmpt XYXYxXYAXY=xXYA
75 17 74 ax-mp xXYAXY=xXYA
76 rescncf XYXYxXYA:XYcnxXYAXY:XYcn
77 17 4 76 mpsyl φxXYAXY:XYcn
78 75 77 eqeltrrid φxXYA:XYcn
79 78 7 mulcncf φxXYAD:XYcn
80 50 67 73 79 cncfmpt2f φxXYBC+AD:XYcn
81 65 80 eqeltrd φdxXYACdx:XYcn
82 23 9 32 8 ibladd φxXYBC+AD𝐿1
83 65 82 eqeltrd φdxXYACdx𝐿1
84 4 5 mulcncf φxXYAC:XYcn
85 1 2 3 81 83 84 ftc2 φXYdxXYACdxtdt=xXYACYxXYACX
86 44 85 eqtrid φXYdxXYACdxxdx=xXYACYxXYACX
87 65 fveq1d φdxXYACdxx=xXYBC+ADx
88 87 adantr φxXYdxXYACdxx=xXYBC+ADx
89 simpr φxXYxXY
90 ovex BC+ADV
91 eqid xXYBC+AD=xXYBC+AD
92 91 fvmpt2 xXYBC+ADVxXYBC+ADx=BC+AD
93 89 90 92 sylancl φxXYxXYBC+ADx=BC+AD
94 88 93 eqtrd φxXYdxXYACdxx=BC+AD
95 94 itgeq2dv φXYdxXYACdxxdx=XYBC+ADdx
96 1 rexrd φX*
97 2 rexrd φY*
98 ubicc2 X*Y*XYYXY
99 96 97 3 98 syl3anc φYXY
100 ovex ACV
101 100 csbex Y/xACV
102 eqid xXYAC=xXYAC
103 102 fvmpts YXYY/xACVxXYACY=Y/xAC
104 99 101 103 sylancl φxXYACY=Y/xAC
105 2 13 csbied φY/xAC=F
106 104 105 eqtrd φxXYACY=F
107 lbicc2 X*Y*XYXXY
108 96 97 3 107 syl3anc φXXY
109 100 csbex X/xACV
110 102 fvmpts XXYX/xACVxXYACX=X/xAC
111 108 109 110 sylancl φxXYACX=X/xAC
112 1 12 csbied φX/xAC=E
113 111 112 eqtrd φxXYACX=E
114 106 113 oveq12d φxXYACYxXYACX=FE
115 86 95 114 3eqtr3d φXYBC+ADdx=FE
116 35 115 eqtr3d φXYBCdx+XYADdx=FE
117 116 oveq1d φXYBCdx+XYADdx-XYBCdx=F-E-XYBCdx
118 34 117 eqtr3d φXYADdx=F-E-XYBCdx