Metamath Proof Explorer


Theorem itgulm

Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses itgulm.z Z = M
itgulm.m φ M
itgulm.f φ F : Z 𝐿 1
itgulm.u φ F u S G
itgulm.s φ vol S
Assertion itgulm φ k Z S F k x dx S G x dx

Proof

Step Hyp Ref Expression
1 itgulm.z Z = M
2 itgulm.m φ M
3 itgulm.f φ F : Z 𝐿 1
4 itgulm.u φ F u S G
5 itgulm.s φ vol S
6 2 adantr φ r + M
7 3 ffnd φ F Fn Z
8 ulmf2 F Fn Z F u S G F : Z S
9 7 4 8 syl2anc φ F : Z S
10 9 adantr φ r + F : Z S
11 eqidd φ r + n Z z S F n z = F n z
12 eqidd φ r + z S G z = G z
13 4 adantr φ r + F u S G
14 simpr φ r + r +
15 5 adantr φ r + vol S
16 ulmcl F u S G G : S
17 fdm G : S dom G = S
18 4 16 17 3syl φ dom G = S
19 1 2 3 4 5 iblulm φ G 𝐿 1
20 iblmbf G 𝐿 1 G MblFn
21 mbfdm G MblFn dom G dom vol
22 19 20 21 3syl φ dom G dom vol
23 18 22 eqeltrrd φ S dom vol
24 mblss S dom vol S
25 ovolge0 S 0 vol * S
26 23 24 25 3syl φ 0 vol * S
27 mblvol S dom vol vol S = vol * S
28 23 27 syl φ vol S = vol * S
29 26 28 breqtrrd φ 0 vol S
30 29 adantr φ r + 0 vol S
31 15 30 ge0p1rpd φ r + vol S + 1 +
32 14 31 rpdivcld φ r + r vol S + 1 +
33 1 6 10 11 12 13 32 ulmi φ r + j Z n j z S F n z G z < r vol S + 1
34 1 uztrn2 j Z n j n Z
35 9 ffvelrnda φ n Z F n S
36 elmapi F n S F n : S
37 35 36 syl φ n Z F n : S
38 37 ffvelrnda φ n Z x S F n x
39 38 adantllr φ r + n Z x S F n x
40 39 adantlrr φ r + n Z z S F n z G z < r vol S + 1 x S F n x
41 37 feqmptd φ n Z F n = x S F n x
42 3 ffvelrnda φ n Z F n 𝐿 1
43 41 42 eqeltrrd φ n Z x S F n x 𝐿 1
44 43 ad2ant2r φ r + n Z z S F n z G z < r vol S + 1 x S F n x 𝐿 1
45 4 16 syl φ G : S
46 45 ffvelrnda φ x S G x
47 46 ad4ant14 φ r + n Z z S F n z G z < r vol S + 1 x S G x
48 45 feqmptd φ G = x S G x
49 48 19 eqeltrrd φ x S G x 𝐿 1
50 49 ad2antrr φ r + n Z z S F n z G z < r vol S + 1 x S G x 𝐿 1
51 40 44 47 50 itgsub φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx = S F n x dx S G x dx
52 51 fveq2d φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx = S F n x dx S G x dx
53 40 47 subcld φ r + n Z z S F n z G z < r vol S + 1 x S F n x G x
54 40 44 47 50 iblsub φ r + n Z z S F n z G z < r vol S + 1 x S F n x G x 𝐿 1
55 53 54 itgcl φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx
56 55 abscld φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx
57 53 abscld φ r + n Z z S F n z G z < r vol S + 1 x S F n x G x
58 53 54 iblabs φ r + n Z z S F n z G z < r vol S + 1 x S F n x G x 𝐿 1
59 57 58 itgrecl φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx
60 rpre r + r
61 60 ad2antlr φ r + n Z z S F n z G z < r vol S + 1 r
62 53 54 itgabs φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx S F n x G x dx
63 32 adantr φ r + n Z z S F n z G z < r vol S + 1 r vol S + 1 +
64 63 rpred φ r + n Z z S F n z G z < r vol S + 1 r vol S + 1
65 5 ad2antrr φ r + n Z z S F n z G z < r vol S + 1 vol S
66 64 65 remulcld φ r + n Z z S F n z G z < r vol S + 1 r vol S + 1 vol S
67 fconstmpt S × r vol S + 1 = x S r vol S + 1
68 23 ad2antrr φ r + n Z z S F n z G z < r vol S + 1 S dom vol
69 63 rpcnd φ r + n Z z S F n z G z < r vol S + 1 r vol S + 1
70 iblconst S dom vol vol S r vol S + 1 S × r vol S + 1 𝐿 1
71 68 65 69 70 syl3anc φ r + n Z z S F n z G z < r vol S + 1 S × r vol S + 1 𝐿 1
72 67 71 eqeltrrid φ r + n Z z S F n z G z < r vol S + 1 x S r vol S + 1 𝐿 1
73 64 adantr φ r + n Z z S F n z G z < r vol S + 1 x S r vol S + 1
74 simprr φ r + n Z z S F n z G z < r vol S + 1 z S F n z G z < r vol S + 1
75 fveq2 z = x F n z = F n x
76 fveq2 z = x G z = G x
77 75 76 oveq12d z = x F n z G z = F n x G x
78 77 fveq2d z = x F n z G z = F n x G x
79 78 breq1d z = x F n z G z < r vol S + 1 F n x G x < r vol S + 1
80 79 rspccva z S F n z G z < r vol S + 1 x S F n x G x < r vol S + 1
81 74 80 sylan φ r + n Z z S F n z G z < r vol S + 1 x S F n x G x < r vol S + 1
82 57 73 81 ltled φ r + n Z z S F n z G z < r vol S + 1 x S F n x G x r vol S + 1
83 58 72 57 73 82 itgle φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx S r vol S + 1 dx
84 itgconst S dom vol vol S r vol S + 1 S r vol S + 1 dx = r vol S + 1 vol S
85 68 65 69 84 syl3anc φ r + n Z z S F n z G z < r vol S + 1 S r vol S + 1 dx = r vol S + 1 vol S
86 83 85 breqtrd φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx r vol S + 1 vol S
87 61 recnd φ r + n Z z S F n z G z < r vol S + 1 r
88 65 recnd φ r + n Z z S F n z G z < r vol S + 1 vol S
89 31 adantr φ r + n Z z S F n z G z < r vol S + 1 vol S + 1 +
90 89 rpcnd φ r + n Z z S F n z G z < r vol S + 1 vol S + 1
91 89 rpne0d φ r + n Z z S F n z G z < r vol S + 1 vol S + 1 0
92 87 88 90 91 div23d φ r + n Z z S F n z G z < r vol S + 1 r vol S vol S + 1 = r vol S + 1 vol S
93 65 ltp1d φ r + n Z z S F n z G z < r vol S + 1 vol S < vol S + 1
94 peano2re vol S vol S + 1
95 65 94 syl φ r + n Z z S F n z G z < r vol S + 1 vol S + 1
96 rpgt0 r + 0 < r
97 96 ad2antlr φ r + n Z z S F n z G z < r vol S + 1 0 < r
98 ltmul2 vol S vol S + 1 r 0 < r vol S < vol S + 1 r vol S < r vol S + 1
99 65 95 61 97 98 syl112anc φ r + n Z z S F n z G z < r vol S + 1 vol S < vol S + 1 r vol S < r vol S + 1
100 93 99 mpbid φ r + n Z z S F n z G z < r vol S + 1 r vol S < r vol S + 1
101 61 65 remulcld φ r + n Z z S F n z G z < r vol S + 1 r vol S
102 101 61 89 ltdivmul2d φ r + n Z z S F n z G z < r vol S + 1 r vol S vol S + 1 < r r vol S < r vol S + 1
103 100 102 mpbird φ r + n Z z S F n z G z < r vol S + 1 r vol S vol S + 1 < r
104 92 103 eqbrtrrd φ r + n Z z S F n z G z < r vol S + 1 r vol S + 1 vol S < r
105 59 66 61 86 104 lelttrd φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx < r
106 56 59 61 62 105 lelttrd φ r + n Z z S F n z G z < r vol S + 1 S F n x G x dx < r
107 52 106 eqbrtrrd φ r + n Z z S F n z G z < r vol S + 1 S F n x dx S G x dx < r
108 107 expr φ r + n Z z S F n z G z < r vol S + 1 S F n x dx S G x dx < r
109 34 108 sylan2 φ r + j Z n j z S F n z G z < r vol S + 1 S F n x dx S G x dx < r
110 109 anassrs φ r + j Z n j z S F n z G z < r vol S + 1 S F n x dx S G x dx < r
111 110 ralimdva φ r + j Z n j z S F n z G z < r vol S + 1 n j S F n x dx S G x dx < r
112 111 reximdva φ r + j Z n j z S F n z G z < r vol S + 1 j Z n j S F n x dx S G x dx < r
113 33 112 mpd φ r + j Z n j S F n x dx S G x dx < r
114 113 ralrimiva φ r + j Z n j S F n x dx S G x dx < r
115 1 fvexi Z V
116 115 mptex k Z S F k x dx V
117 116 a1i φ k Z S F k x dx V
118 fveq2 k = n F k = F n
119 118 fveq1d k = n F k x = F n x
120 119 adantr k = n x S F k x = F n x
121 120 itgeq2dv k = n S F k x dx = S F n x dx
122 eqid k Z S F k x dx = k Z S F k x dx
123 itgex S F n x dx V
124 121 122 123 fvmpt n Z k Z S F k x dx n = S F n x dx
125 124 adantl φ n Z k Z S F k x dx n = S F n x dx
126 46 49 itgcl φ S G x dx
127 38 43 itgcl φ n Z S F n x dx
128 1 2 117 125 126 127 clim2c φ k Z S F k x dx S G x dx r + j Z n j S F n x dx S G x dx < r
129 114 128 mpbird φ k Z S F k x dx S G x dx