Metamath Proof Explorer


Theorem knoppndvlem11

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 28-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem11.t T=xx+12x
knoppndvlem11.f F=yn0CnT2 Nny
knoppndvlem11.a φA
knoppndvlem11.b φB
knoppndvlem11.c φC11
knoppndvlem11.j φJ0
knoppndvlem11.n φN
Assertion knoppndvlem11 φi=0J1FBii=0J1FAiBAi=0J12 NCi

Proof

Step Hyp Ref Expression
1 knoppndvlem11.t T=xx+12x
2 knoppndvlem11.f F=yn0CnT2 Nny
3 knoppndvlem11.a φA
4 knoppndvlem11.b φB
5 knoppndvlem11.c φC11
6 knoppndvlem11.j φJ0
7 knoppndvlem11.n φN
8 fzfid φ0J1Fin
9 7 adantr φi0J1N
10 5 knoppndvlem3 φCC<1
11 10 simpld φC
12 11 adantr φi0J1C
13 4 adantr φi0J1B
14 elfznn0 i0J1i0
15 14 adantl φi0J1i0
16 1 2 9 12 13 15 knoppcnlem3 φi0J1FBi
17 16 recnd φi0J1FBi
18 3 adantr φi0J1A
19 1 2 9 12 18 15 knoppcnlem3 φi0J1FAi
20 19 recnd φi0J1FAi
21 8 17 20 fsumsub φi=0J1FBiFAi=i=0J1FBii=0J1FAi
22 21 eqcomd φi=0J1FBii=0J1FAi=i=0J1FBiFAi
23 22 fveq2d φi=0J1FBii=0J1FAi=i=0J1FBiFAi
24 17 20 subcld φi0J1FBiFAi
25 8 24 fsumcl φi=0J1FBiFAi
26 25 abscld φi=0J1FBiFAi
27 24 abscld φi0J1FBiFAi
28 8 27 fsumrecl φi=0J1FBiFAi
29 4 3 resubcld φBA
30 29 recnd φBA
31 30 abscld φBA
32 2re 2
33 32 a1i φ2
34 nnre NN
35 7 34 syl φN
36 33 35 remulcld φ2 N
37 11 recnd φC
38 37 abscld φC
39 36 38 remulcld φ2 NC
40 39 adantr φi0J12 NC
41 40 15 reexpcld φi0J12 NCi
42 8 41 fsumrecl φi=0J12 NCi
43 31 42 remulcld φBAi=0J12 NCi
44 8 24 fsumabs φi=0J1FBiFAii=0J1FBiFAi
45 31 adantr φi0J1BA
46 45 41 remulcld φi0J1BA2 NCi
47 2 13 15 knoppcnlem1 φi0J1FBi=CiT2 NiB
48 2 18 15 knoppcnlem1 φi0J1FAi=CiT2 NiA
49 47 48 oveq12d φi0J1FBiFAi=CiT2 NiBCiT2 NiA
50 12 15 reexpcld φi0J1Ci
51 50 recnd φi0J1Ci
52 36 adantr φi0J12 N
53 52 15 reexpcld φi0J12 Ni
54 53 13 remulcld φi0J12 NiB
55 1 54 dnicld2 φi0J1T2 NiB
56 55 recnd φi0J1T2 NiB
57 53 18 remulcld φi0J12 NiA
58 1 57 dnicld2 φi0J1T2 NiA
59 58 recnd φi0J1T2 NiA
60 51 56 59 subdid φi0J1CiT2 NiBT2 NiA=CiT2 NiBCiT2 NiA
61 60 eqcomd φi0J1CiT2 NiBCiT2 NiA=CiT2 NiBT2 NiA
62 49 61 eqtrd φi0J1FBiFAi=CiT2 NiBT2 NiA
63 62 fveq2d φi0J1FBiFAi=CiT2 NiBT2 NiA
64 56 59 subcld φi0J1T2 NiBT2 NiA
65 51 64 absmuld φi0J1CiT2 NiBT2 NiA=CiT2 NiBT2 NiA
66 37 adantr φi0J1C
67 66 15 absexpd φi0J1Ci=Ci
68 67 oveq1d φi0J1CiT2 NiBT2 NiA=CiT2 NiBT2 NiA
69 65 68 eqtrd φi0J1CiT2 NiBT2 NiA=CiT2 NiBT2 NiA
70 63 69 eqtrd φi0J1FBiFAi=CiT2 NiBT2 NiA
71 64 abscld φi0J1T2 NiBT2 NiA
72 54 57 resubcld φi0J12 NiB2 NiA
73 72 recnd φi0J12 NiB2 NiA
74 73 abscld φi0J12 NiB2 NiA
75 38 adantr φi0J1C
76 75 15 reexpcld φi0J1Ci
77 66 absge0d φi0J10C
78 75 15 77 expge0d φi0J10Ci
79 1 57 54 dnibnd φi0J1T2 NiBT2 NiA2 NiB2 NiA
80 71 74 76 78 79 lemul2ad φi0J1CiT2 NiBT2 NiACi2 NiB2 NiA
81 53 recnd φi0J12 Ni
82 13 recnd φi0J1B
83 18 recnd φi0J1A
84 81 82 83 subdid φi0J12 NiBA=2 NiB2 NiA
85 84 eqcomd φi0J12 NiB2 NiA=2 NiBA
86 85 fveq2d φi0J12 NiB2 NiA=2 NiBA
87 30 adantr φi0J1BA
88 81 87 absmuld φi0J12 NiBA=2 NiBA
89 52 recnd φi0J12 N
90 89 15 absexpd φi0J12 Ni=2 Ni
91 33 recnd φ2
92 35 recnd φN
93 91 92 absmuld φ2 N=2N
94 0le2 02
95 32 absidi 022=2
96 94 95 ax-mp 2=2
97 96 a1i φ2=2
98 0red φ0
99 1red φ1
100 0le1 01
101 100 a1i φ01
102 nnge1 N1N
103 7 102 syl φ1N
104 98 99 35 101 103 letrd φ0N
105 35 104 absidd φN=N
106 97 105 oveq12d φ2N=2 N
107 93 106 eqtrd φ2 N=2 N
108 107 oveq1d φ2 Ni=2 Ni
109 108 adantr φi0J12 Ni=2 Ni
110 90 109 eqtrd φi0J12 Ni=2 Ni
111 110 oveq1d φi0J12 NiBA=2 NiBA
112 88 111 eqtrd φi0J12 NiBA=2 NiBA
113 86 112 eqtrd φi0J12 NiB2 NiA=2 NiBA
114 113 oveq2d φi0J1Ci2 NiB2 NiA=Ci2 NiBA
115 76 recnd φi0J1Ci
116 45 recnd φi0J1BA
117 115 81 116 mulassd φi0J1Ci2 NiBA=Ci2 NiBA
118 117 eqcomd φi0J1Ci2 NiBA=Ci2 NiBA
119 115 81 mulcld φi0J1Ci2 Ni
120 119 116 mulcomd φi0J1Ci2 NiBA=BACi2 Ni
121 115 81 mulcomd φi0J1Ci2 Ni=2 NiCi
122 75 recnd φi0J1C
123 89 122 15 mulexpd φi0J12 NCi=2 NiCi
124 123 eqcomd φi0J12 NiCi=2 NCi
125 121 124 eqtrd φi0J1Ci2 Ni=2 NCi
126 125 oveq2d φi0J1BACi2 Ni=BA2 NCi
127 118 120 126 3eqtrd φi0J1Ci2 NiBA=BA2 NCi
128 114 127 eqtrd φi0J1Ci2 NiB2 NiA=BA2 NCi
129 80 128 breqtrd φi0J1CiT2 NiBT2 NiABA2 NCi
130 70 129 eqbrtrd φi0J1FBiFAiBA2 NCi
131 8 27 46 130 fsumle φi=0J1FBiFAii=0J1BA2 NCi
132 31 recnd φBA
133 125 119 eqeltrrd φi0J12 NCi
134 8 132 133 fsummulc2 φBAi=0J12 NCi=i=0J1BA2 NCi
135 134 eqcomd φi=0J1BA2 NCi=BAi=0J12 NCi
136 131 135 breqtrd φi=0J1FBiFAiBAi=0J12 NCi
137 26 28 43 44 136 letrd φi=0J1FBiFAiBAi=0J12 NCi
138 23 137 eqbrtrd φi=0J1FBii=0J1FAiBAi=0J12 NCi