Metamath Proof Explorer


Theorem lgsval2lem

Description: Lemma for lgsval2 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
Assertion lgsval2lem ANA/LN=ifN=2if2A0ifAmod81711AN12+1modN1

Proof

Step Hyp Ref Expression
1 lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
2 prmz NN
3 1 lgsval ANA/LN=ifN=0ifA2=110ifN<0A<011seq1×FN
4 2 3 sylan2 ANA/LN=ifN=0ifA2=110ifN<0A<011seq1×FN
5 prmnn NN
6 5 adantl ANN
7 6 nnne0d ANN0
8 7 neneqd AN¬N=0
9 8 iffalsed ANifN=0ifA2=110ifN<0A<011seq1×FN=ifN<0A<011seq1×FN
10 6 nnnn0d ANN0
11 10 nn0ge0d AN0N
12 0re 0
13 6 nnred ANN
14 lenlt 0N0N¬N<0
15 12 13 14 sylancr AN0N¬N<0
16 11 15 mpbid AN¬N<0
17 16 intnanrd AN¬N<0A<0
18 17 iffalsed ANifN<0A<011=1
19 13 11 absidd ANN=N
20 19 fveq2d ANseq1×FN=seq1×FN
21 1z 1
22 prmuz2 NN2
23 22 adantl ANN2
24 df-2 2=1+1
25 24 fveq2i 2=1+1
26 23 25 eleqtrdi ANN1+1
27 seqm1 1N1+1seq1×FN=seq1×FN1FN
28 21 26 27 sylancr ANseq1×FN=seq1×FN1FN
29 1t1e1 11=1
30 29 a1i AN11=1
31 uz2m1nn N2N1
32 23 31 syl ANN1
33 nnuz =1
34 32 33 eleqtrdi ANN11
35 elfznn x1N1x
36 35 adantl ANx1N1x
37 1 lgsfval xFx=ifxifx=2if2A0ifAmod81711Ax12+1modx1xpCntN1
38 36 37 syl ANx1N1Fx=ifxifx=2if2A0ifAmod81711Ax12+1modx1xpCntN1
39 elfzelz N1N1N
40 39 zred N1N1N
41 40 ltm1d N1N1N1<N
42 peano2rem NN1
43 40 42 syl N1N1N1
44 elfzle2 N1N1NN1
45 40 43 44 lensymd N1N1¬N1<N
46 41 45 pm2.65i ¬N1N1
47 eleq1 x=Nx1N1N1N1
48 46 47 mtbiri x=N¬x1N1
49 48 con2i x1N1¬x=N
50 49 ad2antlr ANx1N1x¬x=N
51 prmuz2 xx2
52 simpllr ANx1N1xN
53 dvdsprm x2NxNx=N
54 51 52 53 syl2an2 ANx1N1xxNx=N
55 50 54 mtbird ANx1N1x¬xN
56 simpr ANx1N1xx
57 6 ad2antrr ANx1N1xN
58 pceq0 xNxpCntN=0¬xN
59 56 57 58 syl2anc ANx1N1xxpCntN=0¬xN
60 55 59 mpbird ANx1N1xxpCntN=0
61 60 oveq2d ANx1N1xifx=2if2A0ifAmod81711Ax12+1modx1xpCntN=ifx=2if2A0ifAmod81711Ax12+1modx10
62 0z 0
63 neg1z 1
64 21 63 ifcli ifAmod81711
65 62 64 ifcli if2A0ifAmod81711
66 65 a1i ANxx=2if2A0ifAmod81711
67 simpl ANA
68 67 ad2antrr ANx¬x=2A
69 simplr ANx¬x=2x
70 simpr ANx¬x=2¬x=2
71 70 neqned ANx¬x=2x2
72 eldifsn x2xx2
73 69 71 72 sylanbrc ANx¬x=2x2
74 oddprm x2x12
75 73 74 syl ANx¬x=2x12
76 75 nnnn0d ANx¬x=2x120
77 zexpcl Ax120Ax12
78 68 76 77 syl2anc ANx¬x=2Ax12
79 78 peano2zd ANx¬x=2Ax12+1
80 prmnn xx
81 80 ad2antlr ANx¬x=2x
82 79 81 zmodcld ANx¬x=2Ax12+1modx0
83 82 nn0zd ANx¬x=2Ax12+1modx
84 peano2zm Ax12+1modxAx12+1modx1
85 83 84 syl ANx¬x=2Ax12+1modx1
86 66 85 ifclda ANxifx=2if2A0ifAmod81711Ax12+1modx1
87 86 zcnd ANxifx=2if2A0ifAmod81711Ax12+1modx1
88 87 adantlr ANx1N1xifx=2if2A0ifAmod81711Ax12+1modx1
89 88 exp0d ANx1N1xifx=2if2A0ifAmod81711Ax12+1modx10=1
90 61 89 eqtrd ANx1N1xifx=2if2A0ifAmod81711Ax12+1modx1xpCntN=1
91 90 ifeq1da ANx1N1ifxifx=2if2A0ifAmod81711Ax12+1modx1xpCntN1=ifx11
92 ifid ifx11=1
93 91 92 eqtrdi ANx1N1ifxifx=2if2A0ifAmod81711Ax12+1modx1xpCntN1=1
94 38 93 eqtrd ANx1N1Fx=1
95 30 34 94 seqid3 ANseq1×FN1=1
96 95 oveq1d ANseq1×FN1FN=1FN
97 2 adantl ANN
98 1 lgsfcl ANN0F:
99 67 97 7 98 syl3anc ANF:
100 99 6 ffvelcdmd ANFN
101 100 zcnd ANFN
102 101 mullidd AN1FN=FN
103 28 96 102 3eqtrd ANseq1×FN=FN
104 20 103 eqtrd ANseq1×FN=FN
105 18 104 oveq12d ANifN<0A<011seq1×FN=1FN
106 1 lgsfval NFN=ifNifN=2if2A0ifAmod81711AN12+1modN1NpCntN1
107 6 106 syl ANFN=ifNifN=2if2A0ifAmod81711AN12+1modN1NpCntN1
108 iftrue NifNifN=2if2A0ifAmod81711AN12+1modN1NpCntN1=ifN=2if2A0ifAmod81711AN12+1modN1NpCntN
109 108 adantl ANifNifN=2if2A0ifAmod81711AN12+1modN1NpCntN1=ifN=2if2A0ifAmod81711AN12+1modN1NpCntN
110 6 nncnd ANN
111 110 exp1d ANN1=N
112 111 oveq2d ANNpCntN1=NpCntN
113 simpr ANN
114 pcid N1NpCntN1=1
115 113 21 114 sylancl ANNpCntN1=1
116 112 115 eqtr3d ANNpCntN=1
117 116 oveq2d ANifN=2if2A0ifAmod81711AN12+1modN1NpCntN=ifN=2if2A0ifAmod81711AN12+1modN11
118 eqeq1 x=Nx=2N=2
119 oveq1 x=Nx1=N1
120 119 oveq1d x=Nx12=N12
121 120 oveq2d x=NAx12=AN12
122 121 oveq1d x=NAx12+1=AN12+1
123 id x=Nx=N
124 122 123 oveq12d x=NAx12+1modx=AN12+1modN
125 124 oveq1d x=NAx12+1modx1=AN12+1modN1
126 118 125 ifbieq2d x=Nifx=2if2A0ifAmod81711Ax12+1modx1=ifN=2if2A0ifAmod81711AN12+1modN1
127 126 eleq1d x=Nifx=2if2A0ifAmod81711Ax12+1modx1ifN=2if2A0ifAmod81711AN12+1modN1
128 87 ralrimiva ANxifx=2if2A0ifAmod81711Ax12+1modx1
129 127 128 113 rspcdva ANifN=2if2A0ifAmod81711AN12+1modN1
130 129 exp1d ANifN=2if2A0ifAmod81711AN12+1modN11=ifN=2if2A0ifAmod81711AN12+1modN1
131 117 130 eqtrd ANifN=2if2A0ifAmod81711AN12+1modN1NpCntN=ifN=2if2A0ifAmod81711AN12+1modN1
132 107 109 131 3eqtrd ANFN=ifN=2if2A0ifAmod81711AN12+1modN1
133 105 102 132 3eqtrd ANifN<0A<011seq1×FN=ifN=2if2A0ifAmod81711AN12+1modN1
134 4 9 133 3eqtrd ANA/LN=ifN=2if2A0ifAmod81711AN12+1modN1