Metamath Proof Explorer


Theorem limsupgtlem

Description: For any positive real, the superior limit of F is larger than any of its values at large enough arguments, up to that positive real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupgtlem.m φM
limsupgtlem.z Z=M
limsupgtlem.f φF:Z
limsupgtlem.r φlim supF
limsupgtlem.x φX+
Assertion limsupgtlem φjZkjFkX<lim supF

Proof

Step Hyp Ref Expression
1 limsupgtlem.m φM
2 limsupgtlem.z Z=M
3 limsupgtlem.f φF:Z
4 limsupgtlem.r φlim supF
5 limsupgtlem.x φX+
6 nfv jφ
7 1 2 uzn0d φZ
8 rnresss ranFjranF
9 8 a1i φranFjranF
10 3 frexr φF:Z*
11 10 frnd φranF*
12 9 11 sstrd φranFj*
13 12 supxrcld φsupranFj*<*
14 13 adantr φjZsupranFj*<*
15 nfcv _kF
16 15 1 2 3 limsupreuz φlim supFxjZkjxFkxkZFkx
17 4 16 mpbid φxjZkjxFkxkZFkx
18 17 simpld φxjZkjxFk
19 rexr xx*
20 19 ad4antlr φxjZkjxFkx*
21 3 ad2antrr φjZkjF:Z
22 2 uztrn2 jZkjkZ
23 22 adantll φjZkjkZ
24 21 23 ffvelcdmd φjZkjFk
25 24 rexrd φjZkjFk*
26 25 3impa φjZkjFk*
27 26 ad5ant134 φxjZkjxFkFk*
28 13 ad4antr φxjZkjxFksupranFj*<*
29 simpr φxjZkjxFkxFk
30 12 ad2antrr φjZkjranFj*
31 fvres kjFjk=Fk
32 31 eqcomd kjFk=Fjk
33 32 adantl φjZkjFk=Fjk
34 3 ffnd φFFnZ
35 34 adantr φjZFFnZ
36 23 ssd φjZjZ
37 fnssres FFnZjZFjFnj
38 35 36 37 syl2anc φjZFjFnj
39 38 adantr φjZkjFjFnj
40 simpr φjZkjkj
41 39 40 fnfvelrnd φjZkjFjkranFj
42 33 41 eqeltrd φjZkjFkranFj
43 eqid supranFj*<=supranFj*<
44 30 42 43 supxrubd φjZkjFksupranFj*<
45 44 3impa φjZkjFksupranFj*<
46 45 ad5ant134 φxjZkjxFkFksupranFj*<
47 20 27 28 29 46 xrletrd φxjZkjxFkxsupranFj*<
48 47 rexlimdva2 φxjZkjxFkxsupranFj*<
49 48 ralimdva φxjZkjxFkjZxsupranFj*<
50 49 reximdva φxjZkjxFkxjZxsupranFj*<
51 18 50 mpd φxjZxsupranFj*<
52 5 rphalfcld φX2+
53 6 7 14 51 52 infrpgernmpt φjZsupranFj*<supranjZsupranFj*<*<+𝑒X2
54 simp3 φjZsupranFj*<supranjZsupranFj*<*<+𝑒X2supranFj*<supranjZsupranFj*<*<+𝑒X2
55 1 2 10 limsupvaluz φlim supF=supranjZsupranFj*<*<
56 55 eqcomd φsupranjZsupranFj*<*<=lim supF
57 56 oveq1d φsupranjZsupranFj*<*<+𝑒X2=lim supF+𝑒X2
58 57 3ad2ant1 φjZsupranFj*<supranjZsupranFj*<*<+𝑒X2supranjZsupranFj*<*<+𝑒X2=lim supF+𝑒X2
59 54 58 breqtrd φjZsupranFj*<supranjZsupranFj*<*<+𝑒X2supranFj*<lim supF+𝑒X2
60 25 3adantl3 φjZsupranFj*<lim supF+𝑒X2kjFk*
61 simpl1 φjZsupranFj*<lim supF+𝑒X2kjφ
62 61 13 syl φjZsupranFj*<lim supF+𝑒X2kjsupranFj*<*
63 2 fvexi ZV
64 63 a1i φZV
65 3 64 fexd φFV
66 65 limsupcld φlim supF*
67 5 rpred φX
68 67 rehalfcld φX2
69 68 rexrd φX2*
70 66 69 xaddcld φlim supF+𝑒X2*
71 61 70 syl φjZsupranFj*<lim supF+𝑒X2kjlim supF+𝑒X2*
72 44 3adantl3 φjZsupranFj*<lim supF+𝑒X2kjFksupranFj*<
73 simpl3 φjZsupranFj*<lim supF+𝑒X2kjsupranFj*<lim supF+𝑒X2
74 60 62 71 72 73 xrletrd φjZsupranFj*<lim supF+𝑒X2kjFklim supF+𝑒X2
75 4 68 rexaddd φlim supF+𝑒X2=lim supF+X2
76 61 75 syl φjZsupranFj*<lim supF+𝑒X2kjlim supF+𝑒X2=lim supF+X2
77 74 76 breqtrd φjZsupranFj*<lim supF+𝑒X2kjFklim supF+X2
78 68 ad2antrr φjZkjX2
79 4 ad2antrr φjZkjlim supF
80 24 78 79 lesubaddd φjZkjFkX2lim supFFklim supF+X2
81 80 3adantl3 φjZsupranFj*<lim supF+𝑒X2kjFkX2lim supFFklim supF+X2
82 77 81 mpbird φjZsupranFj*<lim supF+𝑒X2kjFkX2lim supF
83 82 ralrimiva φjZsupranFj*<lim supF+𝑒X2kjFkX2lim supF
84 59 83 syld3an3 φjZsupranFj*<supranjZsupranFj*<*<+𝑒X2kjFkX2lim supF
85 84 3exp φjZsupranFj*<supranjZsupranFj*<*<+𝑒X2kjFkX2lim supF
86 6 85 reximdai φjZsupranFj*<supranjZsupranFj*<*<+𝑒X2jZkjFkX2lim supF
87 53 86 mpd φjZkjFkX2lim supF
88 simpll φjZkjφ
89 3 ffvelcdmda φkZFk
90 67 adantr φkZX
91 89 90 resubcld φkZFkX
92 91 adantr φkZFkX2lim supFFkX
93 68 adantr φkZX2
94 89 93 resubcld φkZFkX2
95 94 adantr φkZFkX2lim supFFkX2
96 4 ad2antrr φkZFkX2lim supFlim supF
97 5 rphalfltd φX2<X
98 97 adantr φkZX2<X
99 93 90 89 98 ltsub2dd φkZFkX<FkX2
100 99 adantr φkZFkX2lim supFFkX<FkX2
101 simpr φkZFkX2lim supFFkX2lim supF
102 92 95 96 100 101 ltletrd φkZFkX2lim supFFkX<lim supF
103 102 ex φkZFkX2lim supFFkX<lim supF
104 88 23 103 syl2anc φjZkjFkX2lim supFFkX<lim supF
105 104 ralimdva φjZkjFkX2lim supFkjFkX<lim supF
106 105 reximdva φjZkjFkX2lim supFjZkjFkX<lim supF
107 87 106 mpd φjZkjFkX<lim supF