Metamath Proof Explorer


Theorem logcn

Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Hypothesis logcn.d D = −∞ 0
Assertion logcn log D : D cn

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 logf1o log : 0 1-1 onto ran log
3 f1of log : 0 1-1 onto ran log log : 0 ran log
4 2 3 ax-mp log : 0 ran log
5 1 logdmss D 0
6 fssres log : 0 ran log D 0 log D : D ran log
7 4 5 6 mp2an log D : D ran log
8 ffn log D : D ran log log D Fn D
9 7 8 ax-mp log D Fn D
10 dffn5 log D Fn D log D = x D log D x
11 9 10 mpbi log D = x D log D x
12 fvres x D log D x = log x
13 1 ellogdm x D x x x +
14 13 simplbi x D x
15 1 logdmn0 x D x 0
16 14 15 logcld x D log x
17 16 replimd x D log x = log x + i log x
18 relog x x 0 log x = log x
19 14 15 18 syl2anc x D log x = log x
20 14 15 absrpcld x D x +
21 20 fvresd x D log + x = log x
22 19 21 eqtr4d x D log x = log + x
23 22 oveq1d x D log x + i log x = log + x + i log x
24 12 17 23 3eqtrd x D log D x = log + x + i log x
25 24 mpteq2ia x D log D x = x D log + x + i log x
26 11 25 eqtri log D = x D log + x + i log x
27 eqid TopOpen fld = TopOpen fld
28 27 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
29 28 a1i + TopOpen fld × t TopOpen fld Cn TopOpen fld
30 27 cnfldtopon TopOpen fld TopOn
31 14 ssriv D
32 resttopon TopOpen fld TopOn D TopOpen fld 𝑡 D TopOn D
33 30 31 32 mp2an TopOpen fld 𝑡 D TopOn D
34 33 a1i TopOpen fld 𝑡 D TopOn D
35 absf abs :
36 fssres abs : D abs D : D
37 35 31 36 mp2an abs D : D
38 37 a1i abs D : D
39 38 feqmptd abs D = x D abs D x
40 fvres x D abs D x = x
41 40 mpteq2ia x D abs D x = x D x
42 39 41 syl6eq abs D = x D x
43 ffn abs D : D abs D Fn D
44 37 43 ax-mp abs D Fn D
45 40 20 eqeltrd x D abs D x +
46 45 rgen x D abs D x +
47 ffnfv abs D : D + abs D Fn D x D abs D x +
48 44 46 47 mpbir2an abs D : D +
49 rpssre +
50 ax-resscn
51 49 50 sstri +
52 abscncf abs : cn
53 rescncf D abs : cn abs D : D cn
54 31 52 53 mp2 abs D : D cn
55 cncffvrn + abs D : D cn abs D : D cn + abs D : D +
56 51 54 55 mp2an abs D : D cn + abs D : D +
57 48 56 mpbir abs D : D cn +
58 42 57 syl6eqelr x D x : D cn +
59 eqid TopOpen fld 𝑡 D = TopOpen fld 𝑡 D
60 eqid TopOpen fld 𝑡 + = TopOpen fld 𝑡 +
61 27 59 60 cncfcn D + D cn + = TopOpen fld 𝑡 D Cn TopOpen fld 𝑡 +
62 31 51 61 mp2an D cn + = TopOpen fld 𝑡 D Cn TopOpen fld 𝑡 +
63 58 62 eleqtrdi x D x TopOpen fld 𝑡 D Cn TopOpen fld 𝑡 +
64 ssid
65 cncfss + cn + cn
66 50 64 65 mp2an + cn + cn
67 relogcn log + : + cn
68 66 67 sselii log + : + cn
69 68 a1i log + : + cn
70 30 toponrestid TopOpen fld = TopOpen fld 𝑡
71 27 60 70 cncfcn + + cn = TopOpen fld 𝑡 + Cn TopOpen fld
72 51 64 71 mp2an + cn = TopOpen fld 𝑡 + Cn TopOpen fld
73 69 72 eleqtrdi log + TopOpen fld 𝑡 + Cn TopOpen fld
74 34 63 73 cnmpt11f x D log + x TopOpen fld 𝑡 D Cn TopOpen fld
75 27 59 70 cncfcn D D cn = TopOpen fld 𝑡 D Cn TopOpen fld
76 31 64 75 mp2an D cn = TopOpen fld 𝑡 D Cn TopOpen fld
77 74 76 eleqtrrdi x D log + x : D cn
78 16 imcld x D log x
79 78 recnd x D log x
80 79 adantl x D log x
81 eqidd x D log x = x D log x
82 eqidd y i y = y i y
83 oveq2 y = log x i y = i log x
84 80 81 82 83 fmptco y i y x D log x = x D i log x
85 cncfss D cn D cn
86 50 64 85 mp2an D cn D cn
87 1 logcnlem5 x D log x : D cn
88 86 87 sselii x D log x : D cn
89 88 a1i x D log x : D cn
90 ax-icn i
91 eqid y i y = y i y
92 91 mulc1cncf i y i y : cn
93 90 92 mp1i y i y : cn
94 89 93 cncfco y i y x D log x : D cn
95 84 94 eqeltrrd x D i log x : D cn
96 27 29 77 95 cncfmpt2f x D log + x + i log x : D cn
97 96 mptru x D log + x + i log x : D cn
98 26 97 eqeltri log D : D cn