Metamath Proof Explorer


Theorem logcn

Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Hypothesis logcn.d D=−∞0
Assertion logcn logD:Dcn

Proof

Step Hyp Ref Expression
1 logcn.d D=−∞0
2 logf1o log:01-1 ontoranlog
3 f1of log:01-1 ontoranloglog:0ranlog
4 2 3 ax-mp log:0ranlog
5 1 logdmss D0
6 fssres log:0ranlogD0logD:Dranlog
7 4 5 6 mp2an logD:Dranlog
8 ffn logD:DranloglogDFnD
9 7 8 ax-mp logDFnD
10 dffn5 logDFnDlogD=xDlogDx
11 9 10 mpbi logD=xDlogDx
12 fvres xDlogDx=logx
13 1 ellogdm xDxxx+
14 13 simplbi xDx
15 1 logdmn0 xDx0
16 14 15 logcld xDlogx
17 16 replimd xDlogx=logx+ilogx
18 relog xx0logx=logx
19 14 15 18 syl2anc xDlogx=logx
20 14 15 absrpcld xDx+
21 20 fvresd xDlog+x=logx
22 19 21 eqtr4d xDlogx=log+x
23 22 oveq1d xDlogx+ilogx=log+x+ilogx
24 12 17 23 3eqtrd xDlogDx=log+x+ilogx
25 24 mpteq2ia xDlogDx=xDlog+x+ilogx
26 11 25 eqtri logD=xDlog+x+ilogx
27 eqid TopOpenfld=TopOpenfld
28 27 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
29 28 a1i +TopOpenfld×tTopOpenfldCnTopOpenfld
30 27 cnfldtopon TopOpenfldTopOn
31 14 ssriv D
32 resttopon TopOpenfldTopOnDTopOpenfld𝑡DTopOnD
33 30 31 32 mp2an TopOpenfld𝑡DTopOnD
34 33 a1i TopOpenfld𝑡DTopOnD
35 absf abs:
36 fssres abs:DabsD:D
37 35 31 36 mp2an absD:D
38 37 a1i absD:D
39 38 feqmptd absD=xDabsDx
40 fvres xDabsDx=x
41 40 mpteq2ia xDabsDx=xDx
42 39 41 eqtrdi absD=xDx
43 ffn absD:DabsDFnD
44 37 43 ax-mp absDFnD
45 40 20 eqeltrd xDabsDx+
46 45 rgen xDabsDx+
47 ffnfv absD:D+absDFnDxDabsDx+
48 44 46 47 mpbir2an absD:D+
49 rpssre +
50 ax-resscn
51 49 50 sstri +
52 abscncf abs:cn
53 rescncf Dabs:cnabsD:Dcn
54 31 52 53 mp2 absD:Dcn
55 cncfcdm +absD:DcnabsD:Dcn+absD:D+
56 51 54 55 mp2an absD:Dcn+absD:D+
57 48 56 mpbir absD:Dcn+
58 42 57 eqeltrrdi xDx:Dcn+
59 eqid TopOpenfld𝑡D=TopOpenfld𝑡D
60 eqid TopOpenfld𝑡+=TopOpenfld𝑡+
61 27 59 60 cncfcn D+Dcn+=TopOpenfld𝑡DCnTopOpenfld𝑡+
62 31 51 61 mp2an Dcn+=TopOpenfld𝑡DCnTopOpenfld𝑡+
63 58 62 eleqtrdi xDxTopOpenfld𝑡DCnTopOpenfld𝑡+
64 ssid
65 cncfss +cn+cn
66 50 64 65 mp2an +cn+cn
67 relogcn log+:+cn
68 66 67 sselii log+:+cn
69 68 a1i log+:+cn
70 30 toponrestid TopOpenfld=TopOpenfld𝑡
71 27 60 70 cncfcn ++cn=TopOpenfld𝑡+CnTopOpenfld
72 51 64 71 mp2an +cn=TopOpenfld𝑡+CnTopOpenfld
73 69 72 eleqtrdi log+TopOpenfld𝑡+CnTopOpenfld
74 34 63 73 cnmpt11f xDlog+xTopOpenfld𝑡DCnTopOpenfld
75 27 59 70 cncfcn DDcn=TopOpenfld𝑡DCnTopOpenfld
76 31 64 75 mp2an Dcn=TopOpenfld𝑡DCnTopOpenfld
77 74 76 eleqtrrdi xDlog+x:Dcn
78 16 imcld xDlogx
79 78 recnd xDlogx
80 79 adantl xDlogx
81 eqidd xDlogx=xDlogx
82 eqidd yiy=yiy
83 oveq2 y=logxiy=ilogx
84 80 81 82 83 fmptco yiyxDlogx=xDilogx
85 cncfss DcnDcn
86 50 64 85 mp2an DcnDcn
87 1 logcnlem5 xDlogx:Dcn
88 86 87 sselii xDlogx:Dcn
89 88 a1i xDlogx:Dcn
90 ax-icn i
91 eqid yiy=yiy
92 91 mulc1cncf iyiy:cn
93 90 92 mp1i yiy:cn
94 89 93 cncfco yiyxDlogx:Dcn
95 84 94 eqeltrrd xDilogx:Dcn
96 27 29 77 95 cncfmpt2f xDlog+x+ilogx:Dcn
97 96 mptru xDlog+x+ilogx:Dcn
98 26 97 eqeltri logD:Dcn