Metamath Proof Explorer


Theorem m1detdiag

Description: The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypotheses mdetdiag.d D=NmaDetR
mdetdiag.a A=NMatR
mdetdiag.b B=BaseA
Assertion m1detdiag RCRingN=IIVMBDM=IMI

Proof

Step Hyp Ref Expression
1 mdetdiag.d D=NmaDetR
2 mdetdiag.a A=NMatR
3 mdetdiag.b B=BaseA
4 eqid BaseSymGrpN=BaseSymGrpN
5 eqid ℤRHomR=ℤRHomR
6 eqid pmSgnN=pmSgnN
7 eqid R=R
8 eqid mulGrpR=mulGrpR
9 1 2 3 4 5 6 7 8 mdetleib MBDM=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxMx
10 9 3ad2ant3 RCRingN=IIVMBDM=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxMx
11 2fveq3 N=IBaseSymGrpN=BaseSymGrpI
12 11 adantr N=IIVBaseSymGrpN=BaseSymGrpI
13 12 3ad2ant2 RCRingN=IIVMBBaseSymGrpN=BaseSymGrpI
14 simp2r RCRingN=IIVMBIV
15 eqid SymGrpI=SymGrpI
16 eqid BaseSymGrpI=BaseSymGrpI
17 eqid I=I
18 15 16 17 symg1bas IVBaseSymGrpI=II
19 14 18 syl RCRingN=IIVMBBaseSymGrpI=II
20 13 19 eqtrd RCRingN=IIVMBBaseSymGrpN=II
21 20 mpteq1d RCRingN=IIVMBpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxMx=pIIℤRHomRpmSgnNpRmulGrpRxNpxMx
22 snex IIV
23 22 a1i RCRingN=IIVMBIIV
24 ovex ℤRHomRpmSgnNIIRmulGrpRxNIIxMxV
25 fveq2 p=IIℤRHomRpmSgnNp=ℤRHomRpmSgnNII
26 fveq1 p=IIpx=IIx
27 26 oveq1d p=IIpxMx=IIxMx
28 27 mpteq2dv p=IIxNpxMx=xNIIxMx
29 28 oveq2d p=IImulGrpRxNpxMx=mulGrpRxNIIxMx
30 25 29 oveq12d p=IIℤRHomRpmSgnNpRmulGrpRxNpxMx=ℤRHomRpmSgnNIIRmulGrpRxNIIxMx
31 30 fmptsng IIVℤRHomRpmSgnNIIRmulGrpRxNIIxMxVIIℤRHomRpmSgnNIIRmulGrpRxNIIxMx=pIIℤRHomRpmSgnNpRmulGrpRxNpxMx
32 31 eqcomd IIVℤRHomRpmSgnNIIRmulGrpRxNIIxMxVpIIℤRHomRpmSgnNpRmulGrpRxNpxMx=IIℤRHomRpmSgnNIIRmulGrpRxNIIxMx
33 23 24 32 sylancl RCRingN=IIVMBpIIℤRHomRpmSgnNpRmulGrpRxNpxMx=IIℤRHomRpmSgnNIIRmulGrpRxNIIxMx
34 eqid SymGrpN=SymGrpN
35 eqid bBaseSymGrpN|dombIFin=bBaseSymGrpN|dombIFin
36 34 4 35 6 psgnfn pmSgnNFnbBaseSymGrpN|dombIFin
37 18 adantl N=IIVBaseSymGrpI=II
38 12 37 eqtrd N=IIVBaseSymGrpN=II
39 38 3ad2ant2 RCRingN=IIVMBBaseSymGrpN=II
40 rabeq BaseSymGrpN=IIbBaseSymGrpN|dombIFin=bII|dombIFin
41 39 40 syl RCRingN=IIVMBbBaseSymGrpN|dombIFin=bII|dombIFin
42 difeq1 b=IIbI=III
43 42 dmeqd b=IIdombI=domIII
44 43 eleq1d b=IIdombIFindomIIIFin
45 44 rabsnif bII|dombIFin=ifdomIIIFinII
46 45 a1i RCRingN=IIVMBbII|dombIFin=ifdomIIIFinII
47 restidsing II=I×I
48 xpsng IVIVI×I=II
49 48 anidms IVI×I=II
50 47 49 eqtr2id IVII=II
51 fnsng IVIVIIFnI
52 51 anidms IVIIFnI
53 fnnfpeq0 IIFnIdomIII=II=II
54 52 53 syl IVdomIII=II=II
55 50 54 mpbird IVdomIII=
56 0fin Fin
57 55 56 eqeltrdi IVdomIIIFin
58 57 adantl N=IIVdomIIIFin
59 58 3ad2ant2 RCRingN=IIVMBdomIIIFin
60 59 iftrued RCRingN=IIVMBifdomIIIFinII=II
61 41 46 60 3eqtrrd RCRingN=IIVMBII=bBaseSymGrpN|dombIFin
62 61 fneq2d RCRingN=IIVMBpmSgnNFnIIpmSgnNFnbBaseSymGrpN|dombIFin
63 36 62 mpbiri RCRingN=IIVMBpmSgnNFnII
64 22 snid IIII
65 fvco2 pmSgnNFnIIIIIIℤRHomRpmSgnNII=ℤRHomRpmSgnNII
66 63 64 65 sylancl RCRingN=IIVMBℤRHomRpmSgnNII=ℤRHomRpmSgnNII
67 fveq2 N=IpmSgnN=pmSgnI
68 67 adantr N=IIVpmSgnN=pmSgnI
69 68 3ad2ant2 RCRingN=IIVMBpmSgnN=pmSgnI
70 69 fveq1d RCRingN=IIVMBpmSgnNII=pmSgnIII
71 snidg IIVIIII
72 22 71 mp1i IVIIII
73 72 18 eleqtrrd IVIIBaseSymGrpI
74 73 ancli IVIVIIBaseSymGrpI
75 74 adantl N=IIVIVIIBaseSymGrpI
76 75 3ad2ant2 RCRingN=IIVMBIVIIBaseSymGrpI
77 eqid pmSgnI=pmSgnI
78 17 15 16 77 psgnsn IVIIBaseSymGrpIpmSgnIII=1
79 76 78 syl RCRingN=IIVMBpmSgnIII=1
80 70 79 eqtrd RCRingN=IIVMBpmSgnNII=1
81 80 fveq2d RCRingN=IIVMBℤRHomRpmSgnNII=ℤRHomR1
82 crngring RCRingRRing
83 82 3ad2ant1 RCRingN=IIVMBRRing
84 eqid 1R=1R
85 5 84 zrh1 RRingℤRHomR1=1R
86 83 85 syl RCRingN=IIVMBℤRHomR1=1R
87 66 81 86 3eqtrd RCRingN=IIVMBℤRHomRpmSgnNII=1R
88 simp2l RCRingN=IIVMBN=I
89 88 mpteq1d RCRingN=IIVMBxNIIxMx=xIIIxMx
90 89 oveq2d RCRingN=IIVMBmulGrpRxNIIxMx=mulGrpRxIIIxMx
91 8 ringmgp RRingmulGrpRMnd
92 82 91 syl RCRingmulGrpRMnd
93 92 3ad2ant1 RCRingN=IIVMBmulGrpRMnd
94 snidg IVII
95 94 adantl N=IIVII
96 eleq2 N=IINII
97 96 adantr N=IIVINII
98 95 97 mpbird N=IIVIN
99 3 eleq2i MBMBaseA
100 99 biimpi MBMBaseA
101 simpl INMBaseAIN
102 simpr INMBaseAMBaseA
103 101 101 102 3jca INMBaseAININMBaseA
104 98 100 103 syl2an N=IIVMBININMBaseA
105 104 3adant1 RCRingN=IIVMBININMBaseA
106 eqid BaseR=BaseR
107 2 106 matecl ININMBaseAIMIBaseR
108 105 107 syl RCRingN=IIVMBIMIBaseR
109 8 106 mgpbas BaseR=BasemulGrpR
110 108 109 eleqtrdi RCRingN=IIVMBIMIBasemulGrpR
111 eqid BasemulGrpR=BasemulGrpR
112 fveq2 x=IIIx=III
113 eqvisset x=IIV
114 fvsng IVIVIII=I
115 113 113 114 syl2anc x=IIII=I
116 112 115 eqtrd x=IIIx=I
117 id x=Ix=I
118 116 117 oveq12d x=IIIxMx=IMI
119 111 118 gsumsn mulGrpRMndIVIMIBasemulGrpRmulGrpRxIIIxMx=IMI
120 93 14 110 119 syl3anc RCRingN=IIVMBmulGrpRxIIIxMx=IMI
121 90 120 eqtrd RCRingN=IIVMBmulGrpRxNIIxMx=IMI
122 87 121 oveq12d RCRingN=IIVMBℤRHomRpmSgnNIIRmulGrpRxNIIxMx=1RRIMI
123 98 3ad2ant2 RCRingN=IIVMBIN
124 100 3ad2ant3 RCRingN=IIVMBMBaseA
125 123 123 124 107 syl3anc RCRingN=IIVMBIMIBaseR
126 106 7 84 ringlidm RRingIMIBaseR1RRIMI=IMI
127 83 125 126 syl2anc RCRingN=IIVMB1RRIMI=IMI
128 122 127 eqtrd RCRingN=IIVMBℤRHomRpmSgnNIIRmulGrpRxNIIxMx=IMI
129 128 opeq2d RCRingN=IIVMBIIℤRHomRpmSgnNIIRmulGrpRxNIIxMx=IIIMI
130 129 sneqd RCRingN=IIVMBIIℤRHomRpmSgnNIIRmulGrpRxNIIxMx=IIIMI
131 ovex IMIV
132 eqidd y=IIIMI=IMI
133 132 fmptsng IIVIMIVIIIMI=yIIIMI
134 23 131 133 sylancl RCRingN=IIVMBIIIMI=yIIIMI
135 130 134 eqtrd RCRingN=IIVMBIIℤRHomRpmSgnNIIRmulGrpRxNIIxMx=yIIIMI
136 21 33 135 3eqtrd RCRingN=IIVMBpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxMx=yIIIMI
137 136 oveq2d RCRingN=IIVMBRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxMx=RyIIIMI
138 ringmnd RRingRMnd
139 82 138 syl RCRingRMnd
140 139 3ad2ant1 RCRingN=IIVMBRMnd
141 106 132 gsumsn RMndIIVIMIBaseRRyIIIMI=IMI
142 140 23 125 141 syl3anc RCRingN=IIVMBRyIIIMI=IMI
143 10 137 142 3eqtrd RCRingN=IIVMBDM=IMI