Metamath Proof Explorer


Theorem madurid

Description: Multiplying a matrix with its adjunct results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in Lang p. 518. (Contributed by Stefan O'Rear, 16-Jul-2018)

Ref Expression
Hypotheses madurid.a A=NMatR
madurid.b B=BaseA
madurid.j J=NmaAdjuR
madurid.d D=NmaDetR
madurid.i 1˙=1A
madurid.t ·˙=A
madurid.s ˙=A
Assertion madurid MBRCRingM·˙JM=DM˙1˙

Proof

Step Hyp Ref Expression
1 madurid.a A=NMatR
2 madurid.b B=BaseA
3 madurid.j J=NmaAdjuR
4 madurid.d D=NmaDetR
5 madurid.i 1˙=1A
6 madurid.t ·˙=A
7 madurid.s ˙=A
8 eqid RmaMulNNN=RmaMulNNN
9 eqid BaseR=BaseR
10 eqid R=R
11 simpr MBRCRingRCRing
12 1 2 matrcl MBNFinRV
13 12 simpld MBNFin
14 13 adantr MBRCRingNFin
15 1 9 2 matbas2i MBMBaseRN×N
16 15 adantr MBRCRingMBaseRN×N
17 1 3 2 maduf RCRingJ:BB
18 17 adantl MBRCRingJ:BB
19 simpl MBRCRingMB
20 18 19 ffvelcdmd MBRCRingJMB
21 1 9 2 matbas2i JMBJMBaseRN×N
22 20 21 syl MBRCRingJMBaseRN×N
23 8 9 10 11 14 14 14 16 22 mamuval MBRCRingMRmaMulNNNJM=aN,bNRcNaMcRcJMb
24 1 8 matmulr NFinRCRingRmaMulNNN=A
25 13 24 sylan MBRCRingRmaMulNNN=A
26 25 6 eqtr4di MBRCRingRmaMulNNN=·˙
27 26 oveqd MBRCRingMRmaMulNNNJM=M·˙JM
28 simp1l MBRCRingaNbNMB
29 simp1r MBRCRingaNbNRCRing
30 elmapi MBaseRN×NM:N×NBaseR
31 16 30 syl MBRCRingM:N×NBaseR
32 31 3ad2ant1 MBRCRingaNbNM:N×NBaseR
33 32 adantr MBRCRingaNbNcNM:N×NBaseR
34 simpl2 MBRCRingaNbNcNaN
35 simpr MBRCRingaNbNcNcN
36 33 34 35 fovcdmd MBRCRingaNbNcNaMcBaseR
37 simp3 MBRCRingaNbNbN
38 1 3 2 4 10 9 28 29 36 37 madugsum MBRCRingaNbNRcNaMcRcJMb=DdN,cNifd=baMcdMc
39 iftrue a=bifa=bDM0R=DM
40 39 adantl MBRCRinga=bifa=bDM0R=DM
41 31 ffnd MBRCRingMFnN×N
42 fnov MFnN×NM=dN,cNdMc
43 41 42 sylib MBRCRingM=dN,cNdMc
44 43 adantr MBRCRinga=bM=dN,cNdMc
45 equtr2 a=bd=ba=d
46 45 oveq1d a=bd=baMc=dMc
47 46 ifeq1da a=bifd=baMcdMc=ifd=bdMcdMc
48 ifid ifd=bdMcdMc=dMc
49 47 48 eqtrdi a=bifd=baMcdMc=dMc
50 49 adantl MBRCRinga=bifd=baMcdMc=dMc
51 50 mpoeq3dv MBRCRinga=bdN,cNifd=baMcdMc=dN,cNdMc
52 44 51 eqtr4d MBRCRinga=bM=dN,cNifd=baMcdMc
53 52 fveq2d MBRCRinga=bDM=DdN,cNifd=baMcdMc
54 40 53 eqtr2d MBRCRinga=bDdN,cNifd=baMcdMc=ifa=bDM0R
55 54 3ad2antl1 MBRCRingaNbNa=bDdN,cNifd=baMcdMc=ifa=bDM0R
56 eqid 0R=0R
57 simpl1r MBRCRingaNbN¬a=bRCRing
58 14 3ad2ant1 MBRCRingaNbNNFin
59 58 adantr MBRCRingaNbN¬a=bNFin
60 32 ad2antrr MBRCRingaNbN¬a=bcNM:N×NBaseR
61 simpll2 MBRCRingaNbN¬a=bcNaN
62 simpr MBRCRingaNbN¬a=bcNcN
63 60 61 62 fovcdmd MBRCRingaNbN¬a=bcNaMcBaseR
64 32 adantr MBRCRingaNbN¬a=bM:N×NBaseR
65 64 fovcdmda MBRCRingaNbN¬a=bdNcNdMcBaseR
66 65 3impb MBRCRingaNbN¬a=bdNcNdMcBaseR
67 simpl3 MBRCRingaNbN¬a=bbN
68 simpl2 MBRCRingaNbN¬a=baN
69 neqne ¬a=bab
70 69 necomd ¬a=bba
71 70 adantl MBRCRingaNbN¬a=bba
72 4 9 56 57 59 63 66 67 68 71 mdetralt2 MBRCRingaNbN¬a=bDdN,cNifd=baMcifd=aaMcdMc=0R
73 ifid ifd=adMcdMc=dMc
74 oveq1 d=adMc=aMc
75 74 adantl MBRCRingaNbN¬a=bd=adMc=aMc
76 75 ifeq1da MBRCRingaNbN¬a=bifd=adMcdMc=ifd=aaMcdMc
77 73 76 eqtr3id MBRCRingaNbN¬a=bdMc=ifd=aaMcdMc
78 77 ifeq2d MBRCRingaNbN¬a=bifd=baMcdMc=ifd=baMcifd=aaMcdMc
79 78 mpoeq3dv MBRCRingaNbN¬a=bdN,cNifd=baMcdMc=dN,cNifd=baMcifd=aaMcdMc
80 79 fveq2d MBRCRingaNbN¬a=bDdN,cNifd=baMcdMc=DdN,cNifd=baMcifd=aaMcdMc
81 iffalse ¬a=bifa=bDM0R=0R
82 81 adantl MBRCRingaNbN¬a=bifa=bDM0R=0R
83 72 80 82 3eqtr4d MBRCRingaNbN¬a=bDdN,cNifd=baMcdMc=ifa=bDM0R
84 55 83 pm2.61dan MBRCRingaNbNDdN,cNifd=baMcdMc=ifa=bDM0R
85 38 84 eqtrd MBRCRingaNbNRcNaMcRcJMb=ifa=bDM0R
86 85 mpoeq3dva MBRCRingaN,bNRcNaMcRcJMb=aN,bNifa=bDM0R
87 5 oveq2i DM˙1˙=DM˙1A
88 crngring RCRingRRing
89 88 adantl MBRCRingRRing
90 4 1 2 9 mdetf RCRingD:BBaseR
91 90 adantl MBRCRingD:BBaseR
92 91 19 ffvelcdmd MBRCRingDMBaseR
93 1 9 7 56 matsc NFinRRingDMBaseRDM˙1A=aN,bNifa=bDM0R
94 14 89 92 93 syl3anc MBRCRingDM˙1A=aN,bNifa=bDM0R
95 87 94 eqtrid MBRCRingDM˙1˙=aN,bNifa=bDM0R
96 86 95 eqtr4d MBRCRingaN,bNRcNaMcRcJMb=DM˙1˙
97 23 27 96 3eqtr3d MBRCRingM·˙JM=DM˙1˙