Step |
Hyp |
Ref |
Expression |
1 |
|
madurid.a |
|
2 |
|
madurid.b |
|
3 |
|
madurid.j |
|
4 |
|
madurid.d |
|
5 |
|
madurid.i |
|
6 |
|
madurid.t |
|
7 |
|
madurid.s |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
simpr |
|
12 |
1 2
|
matrcl |
|
13 |
12
|
simpld |
|
14 |
13
|
adantr |
|
15 |
1 9 2
|
matbas2i |
|
16 |
15
|
adantr |
|
17 |
1 3 2
|
maduf |
|
18 |
17
|
adantl |
|
19 |
|
simpl |
|
20 |
18 19
|
ffvelrnd |
|
21 |
1 9 2
|
matbas2i |
|
22 |
20 21
|
syl |
|
23 |
8 9 10 11 14 14 14 16 22
|
mamuval |
|
24 |
1 8
|
matmulr |
|
25 |
13 24
|
sylan |
|
26 |
25 6
|
eqtr4di |
|
27 |
26
|
oveqd |
|
28 |
|
simp1l |
|
29 |
|
simp1r |
|
30 |
|
elmapi |
|
31 |
16 30
|
syl |
|
32 |
31
|
3ad2ant1 |
|
33 |
32
|
adantr |
|
34 |
|
simpl2 |
|
35 |
|
simpr |
|
36 |
33 34 35
|
fovrnd |
|
37 |
|
simp3 |
|
38 |
1 3 2 4 10 9 28 29 36 37
|
madugsum |
|
39 |
|
iftrue |
|
40 |
39
|
adantl |
|
41 |
31
|
ffnd |
|
42 |
|
fnov |
|
43 |
41 42
|
sylib |
|
44 |
43
|
adantr |
|
45 |
|
equtr2 |
|
46 |
45
|
oveq1d |
|
47 |
46
|
ifeq1da |
|
48 |
|
ifid |
|
49 |
47 48
|
eqtrdi |
|
50 |
49
|
adantl |
|
51 |
50
|
mpoeq3dv |
|
52 |
44 51
|
eqtr4d |
|
53 |
52
|
fveq2d |
|
54 |
40 53
|
eqtr2d |
|
55 |
54
|
3ad2antl1 |
|
56 |
|
eqid |
|
57 |
|
simpl1r |
|
58 |
14
|
3ad2ant1 |
|
59 |
58
|
adantr |
|
60 |
32
|
ad2antrr |
|
61 |
|
simpll2 |
|
62 |
|
simpr |
|
63 |
60 61 62
|
fovrnd |
|
64 |
32
|
adantr |
|
65 |
64
|
fovrnda |
|
66 |
65
|
3impb |
|
67 |
|
simpl3 |
|
68 |
|
simpl2 |
|
69 |
|
neqne |
|
70 |
69
|
necomd |
|
71 |
70
|
adantl |
|
72 |
4 9 56 57 59 63 66 67 68 71
|
mdetralt2 |
|
73 |
|
ifid |
|
74 |
|
oveq1 |
|
75 |
74
|
adantl |
|
76 |
75
|
ifeq1da |
|
77 |
73 76
|
eqtr3id |
|
78 |
77
|
ifeq2d |
|
79 |
78
|
mpoeq3dv |
|
80 |
79
|
fveq2d |
|
81 |
|
iffalse |
|
82 |
81
|
adantl |
|
83 |
72 80 82
|
3eqtr4d |
|
84 |
55 83
|
pm2.61dan |
|
85 |
38 84
|
eqtrd |
|
86 |
85
|
mpoeq3dva |
|
87 |
5
|
oveq2i |
|
88 |
|
crngring |
|
89 |
88
|
adantl |
|
90 |
4 1 2 9
|
mdetf |
|
91 |
90
|
adantl |
|
92 |
91 19
|
ffvelrnd |
|
93 |
1 9 7 56
|
matsc |
|
94 |
14 89 92 93
|
syl3anc |
|
95 |
87 94
|
eqtrid |
|
96 |
86 95
|
eqtr4d |
|
97 |
23 27 96
|
3eqtr3d |
|