Metamath Proof Explorer


Theorem mat2pmatmul

Description: The transformation of matrices into polynomial matrices preserves the multiplication. (Contributed by AV, 29-Oct-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
mat2pmatbas0.h H=BaseC
Assertion mat2pmatmul NFinRCRingxByBTxAy=TxCTy

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 mat2pmatbas0.h H=BaseC
7 eqid RmaMulNNN=RmaMulNNN
8 2 7 matmulr NFinRCRingRmaMulNNN=A
9 8 eqcomd NFinRCRingA=RmaMulNNN
10 9 oveqdr NFinRCRingxByBxAy=xRmaMulNNNy
11 eqid BaseR=BaseR
12 eqid R=R
13 crngring RCRingRRing
14 13 ad2antlr NFinRCRingxByBRRing
15 simpll NFinRCRingxByBNFin
16 3 eleq2i xBxBaseA
17 16 biimpi xBxBaseA
18 17 adantr xByBxBaseA
19 18 adantl NFinRCRingxByBxBaseA
20 2 11 matbas2 NFinRCRingBaseRN×N=BaseA
21 20 adantr NFinRCRingxByBBaseRN×N=BaseA
22 19 21 eleqtrrd NFinRCRingxByBxBaseRN×N
23 3 eleq2i yByBaseA
24 23 biimpi yByBaseA
25 24 ad2antll NFinRCRingxByByBaseA
26 20 eleq2d NFinRCRingyBaseRN×NyBaseA
27 26 adantr NFinRCRingxByByBaseRN×NyBaseA
28 25 27 mpbird NFinRCRingxByByBaseRN×N
29 7 11 12 14 15 15 15 22 28 mamuval NFinRCRingxByBxRmaMulNNNy=iN,jNRmNixmRmyj
30 10 29 eqtrd NFinRCRingxByBxAy=iN,jNRmNixmRmyj
31 30 3ad2ant1 NFinRCRingxByBkNlNxAy=iN,jNRmNixmRmyj
32 oveq1 i=kixm=kxm
33 oveq2 j=lmyj=myl
34 32 33 oveqan12d i=kj=lixmRmyj=kxmRmyl
35 34 mpteq2dv i=kj=lmNixmRmyj=mNkxmRmyl
36 35 oveq2d i=kj=lRmNixmRmyj=RmNkxmRmyl
37 36 adantl NFinRCRingxByBkNlNi=kj=lRmNixmRmyj=RmNkxmRmyl
38 simp2 NFinRCRingxByBkNlNkN
39 simp3 NFinRCRingxByBkNlNlN
40 ovexd NFinRCRingxByBkNlNRmNkxmRmylV
41 31 37 38 39 40 ovmpod NFinRCRingxByBkNlNkxAyl=RmNkxmRmyl
42 41 fveq2d NFinRCRingxByBkNlNalgScPkxAyl=algScPRmNkxmRmyl
43 eqid 0R=0R
44 ringcmn RRingRCMnd
45 13 44 syl RCRingRCMnd
46 45 ad2antlr NFinRCRingxByBRCMnd
47 46 3ad2ant1 NFinRCRingxByBkNlNRCMnd
48 4 ply1ring RRingPRing
49 13 48 syl RCRingPRing
50 ringmnd PRingPMnd
51 49 50 syl RCRingPMnd
52 51 ad2antlr NFinRCRingxByBPMnd
53 52 3ad2ant1 NFinRCRingxByBkNlNPMnd
54 15 3ad2ant1 NFinRCRingxByBkNlNNFin
55 eqid algScP=algScP
56 eqid ScalarP=ScalarP
57 49 adantl NFinRCRingPRing
58 4 ply1lmod RRingPLMod
59 13 58 syl RCRingPLMod
60 59 adantl NFinRCRingPLMod
61 55 56 57 60 asclghm NFinRCRingalgScPScalarPGrpHomP
62 4 ply1sca RCRingR=ScalarP
63 62 adantl NFinRCRingR=ScalarP
64 63 oveq1d NFinRCRingRGrpHomP=ScalarPGrpHomP
65 61 64 eleqtrrd NFinRCRingalgScPRGrpHomP
66 ghmmhm algScPRGrpHomPalgScPRMndHomP
67 65 66 syl NFinRCRingalgScPRMndHomP
68 67 adantr NFinRCRingxByBalgScPRMndHomP
69 68 3ad2ant1 NFinRCRingxByBkNlNalgScPRMndHomP
70 14 3ad2ant1 NFinRCRingxByBkNlNRRing
71 70 adantr NFinRCRingxByBkNlNmNRRing
72 38 adantr NFinRCRingxByBkNlNmNkN
73 simpr NFinRCRingxByBkNlNmNmN
74 19 3ad2ant1 NFinRCRingxByBkNlNxBaseA
75 74 adantr NFinRCRingxByBkNlNmNxBaseA
76 75 16 sylibr NFinRCRingxByBkNlNmNxB
77 2 11 3 72 73 76 matecld NFinRCRingxByBkNlNmNkxmBaseR
78 39 adantr NFinRCRingxByBkNlNmNlN
79 2 fveq2i BaseA=BaseNMatR
80 3 79 eqtri B=BaseNMatR
81 80 eleq2i yByBaseNMatR
82 81 biimpi yByBaseNMatR
83 82 ad2antll NFinRCRingxByByBaseNMatR
84 83 3ad2ant1 NFinRCRingxByBkNlNyBaseNMatR
85 84 adantr NFinRCRingxByBkNlNmNyBaseNMatR
86 85 81 sylibr NFinRCRingxByBkNlNmNyB
87 2 11 3 73 78 86 matecld NFinRCRingxByBkNlNmNmylBaseR
88 11 12 ringcl RRingkxmBaseRmylBaseRkxmRmylBaseR
89 71 77 87 88 syl3anc NFinRCRingxByBkNlNmNkxmRmylBaseR
90 eqid mNkxmRmyl=mNkxmRmyl
91 ovexd NFinRCRingxByBkNlNmNkxmRmylV
92 fvexd NFinRCRingxByBkNlN0RV
93 90 54 91 92 fsuppmptdm NFinRCRingxByBkNlNfinSupp0RmNkxmRmyl
94 11 43 47 53 54 69 89 93 gsummptmhm NFinRCRingxByBkNlNPmNalgScPkxmRmyl=algScPRmNkxmRmyl
95 4 ply1assa RCRingPAssAlg
96 95 adantl NFinRCRingPAssAlg
97 55 56 asclrhm PAssAlgalgScPScalarPRingHomP
98 96 97 syl NFinRCRingalgScPScalarPRingHomP
99 63 oveq1d NFinRCRingRRingHomP=ScalarPRingHomP
100 98 99 eleqtrrd NFinRCRingalgScPRRingHomP
101 100 adantr NFinRCRingxByBalgScPRRingHomP
102 101 3ad2ant1 NFinRCRingxByBkNlNalgScPRRingHomP
103 102 adantr NFinRCRingxByBkNlNmNalgScPRRingHomP
104 25 3ad2ant1 NFinRCRingxByBkNlNyBaseA
105 104 adantr NFinRCRingxByBkNlNmNyBaseA
106 105 23 sylibr NFinRCRingxByBkNlNmNyB
107 2 11 3 73 78 106 matecld NFinRCRingxByBkNlNmNmylBaseR
108 eqid P=P
109 11 12 108 rhmmul algScPRRingHomPkxmBaseRmylBaseRalgScPkxmRmyl=algScPkxmPalgScPmyl
110 103 77 107 109 syl3anc NFinRCRingxByBkNlNmNalgScPkxmRmyl=algScPkxmPalgScPmyl
111 110 mpteq2dva NFinRCRingxByBkNlNmNalgScPkxmRmyl=mNalgScPkxmPalgScPmyl
112 111 oveq2d NFinRCRingxByBkNlNPmNalgScPkxmRmyl=PmNalgScPkxmPalgScPmyl
113 42 94 112 3eqtr2d NFinRCRingxByBkNlNalgScPkxAyl=PmNalgScPkxmPalgScPmyl
114 113 mpoeq3dva NFinRCRingxByBkN,lNalgScPkxAyl=kN,lNPmNalgScPkxmPalgScPmyl
115 eqid BaseP=BaseP
116 eqid C=C
117 49 ad2antlr NFinRCRingxByBPRing
118 eqid iN,jNalgScPixj=iN,jNalgScPixj
119 eqid iN,jNalgScPiyj=iN,jNalgScPiyj
120 14 3ad2ant1 NFinRCRingxByBiNjNRRing
121 simp2 NFinRCRingxByBiNjNiN
122 simp3 NFinRCRingxByBiNjNjN
123 simp1rl NFinRCRingxByBiNjNxB
124 2 11 3 121 122 123 matecld NFinRCRingxByBiNjNixjBaseR
125 4 55 11 115 ply1sclcl RRingixjBaseRalgScPixjBaseP
126 120 124 125 syl2anc NFinRCRingxByBiNjNalgScPixjBaseP
127 simp1rr NFinRCRingxByBiNjNyB
128 2 11 3 121 122 127 matecld NFinRCRingxByBiNjNiyjBaseR
129 4 55 11 115 ply1sclcl RRingiyjBaseRalgScPiyjBaseP
130 120 128 129 syl2anc NFinRCRingxByBiNjNalgScPiyjBaseP
131 oveq12 k=im=jkxm=ixj
132 131 fveq2d k=im=jalgScPkxm=algScPixj
133 132 adantl NFinRCRingxByBk=im=jalgScPkxm=algScPixj
134 oveq12 m=il=jmyl=iyj
135 134 fveq2d m=il=jalgScPmyl=algScPiyj
136 135 adantl NFinRCRingxByBm=il=jalgScPmyl=algScPiyj
137 fvexd NFinRCRingxByBkNmNalgScPkxmV
138 fvexd NFinRCRingxByBmNlNalgScPmylV
139 5 115 116 108 117 15 118 119 126 130 133 136 137 138 mpomatmul NFinRCRingxByBiN,jNalgScPixjCiN,jNalgScPiyj=kN,lNPmNalgScPkxmPalgScPmyl
140 114 139 eqtr4d NFinRCRingxByBkN,lNalgScPkxAyl=iN,jNalgScPixjCiN,jNalgScPiyj
141 2 matring NFinRRingARing
142 13 141 sylan2 NFinRCRingARing
143 142 anim1i NFinRCRingxByBARingxByB
144 3anass ARingxByBARingxByB
145 143 144 sylibr NFinRCRingxByBARingxByB
146 eqid A=A
147 3 146 ringcl ARingxByBxAyB
148 145 147 syl NFinRCRingxByBxAyB
149 1 2 3 4 55 mat2pmatval NFinRRingxAyBTxAy=kN,lNalgScPkxAyl
150 15 14 148 149 syl3anc NFinRCRingxByBTxAy=kN,lNalgScPkxAyl
151 simpl xByBxB
152 151 anim2i NFinRCRingxByBNFinRCRingxB
153 df-3an NFinRCRingxBNFinRCRingxB
154 152 153 sylibr NFinRCRingxByBNFinRCRingxB
155 1 2 3 4 55 mat2pmatval NFinRCRingxBTx=iN,jNalgScPixj
156 154 155 syl NFinRCRingxByBTx=iN,jNalgScPixj
157 simpr xByByB
158 157 anim2i NFinRCRingxByBNFinRCRingyB
159 df-3an NFinRCRingyBNFinRCRingyB
160 158 159 sylibr NFinRCRingxByBNFinRCRingyB
161 1 2 3 4 55 mat2pmatval NFinRCRingyBTy=iN,jNalgScPiyj
162 160 161 syl NFinRCRingxByBTy=iN,jNalgScPiyj
163 156 162 oveq12d NFinRCRingxByBTxCTy=iN,jNalgScPixjCiN,jNalgScPiyj
164 140 150 163 3eqtr4d NFinRCRingxByBTxAy=TxCTy
165 164 ralrimivva NFinRCRingxByBTxAy=TxCTy