Metamath Proof Explorer


Theorem matunitlindf

Description: A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion matunitlindf RFieldMBaseIMatRMUnitIMatRcurryMLIndFRfreeLModI

Proof

Step Hyp Ref Expression
1 fvoveq1 I=BaseIMatR=BaseMatR
2 mat0dimbas0 RFieldBaseMatR=
3 1 2 sylan9eq I=RFieldBaseIMatR=
4 3 eleq2d I=RFieldMBaseIMatRM
5 elsni MM=
6 4 5 syl6bi I=RFieldMBaseIMatRM=
7 6 imdistanda I=RFieldMBaseIMatRRFieldM=
8 7 impcom RFieldMBaseIMatRI=RFieldM=
9 isfld RFieldRDivRingRCRing
10 9 simplbi RFieldRDivRing
11 drngring RDivRingRRing
12 eqid MatR=MatR
13 12 mat0dimid RRing1MatR=
14 0fin Fin
15 12 matring FinRRingMatRRing
16 14 15 mpan RRingMatRRing
17 eqid UnitMatR=UnitMatR
18 eqid 1MatR=1MatR
19 17 18 1unit MatRRing1MatRUnitMatR
20 16 19 syl RRing1MatRUnitMatR
21 13 20 eqeltrrd RRingUnitMatR
22 10 11 21 3syl RFieldUnitMatR
23 f0 :BaseRfreeLMod
24 dm0 dom=
25 24 feq2i :domBaseRfreeLMod:BaseRfreeLMod
26 23 25 mpbir :domBaseRfreeLMod
27 rzal dom=xdomyBaseScalarRfreeLMod0ScalarRfreeLMod¬yRfreeLModxLSpanRfreeLModdomx
28 24 27 ax-mp xdomyBaseScalarRfreeLMod0ScalarRfreeLMod¬yRfreeLModxLSpanRfreeLModdomx
29 ovex RfreeLModV
30 eqid BaseRfreeLMod=BaseRfreeLMod
31 eqid RfreeLMod=RfreeLMod
32 eqid LSpanRfreeLMod=LSpanRfreeLMod
33 eqid ScalarRfreeLMod=ScalarRfreeLMod
34 eqid BaseScalarRfreeLMod=BaseScalarRfreeLMod
35 eqid 0ScalarRfreeLMod=0ScalarRfreeLMod
36 30 31 32 33 34 35 islindf RfreeLModVFinLIndFRfreeLMod:domBaseRfreeLModxdomyBaseScalarRfreeLMod0ScalarRfreeLMod¬yRfreeLModxLSpanRfreeLModdomx
37 29 14 36 mp2an LIndFRfreeLMod:domBaseRfreeLModxdomyBaseScalarRfreeLMod0ScalarRfreeLMod¬yRfreeLModxLSpanRfreeLModdomx
38 26 28 37 mpbir2an LIndFRfreeLMod
39 38 a1i RFieldLIndFRfreeLMod
40 22 39 2thd RFieldUnitMatRLIndFRfreeLMod
41 fvoveq1 I=UnitIMatR=UnitMatR
42 eleq12 M=UnitIMatR=UnitMatRMUnitIMatRUnitMatR
43 41 42 sylan2 M=I=MUnitIMatRUnitMatR
44 cureq M=curryM=curry
45 df-cur curry=xdomdomyz|xyz
46 24 dmeqi domdom=dom
47 46 24 eqtri domdom=
48 mpteq1 domdom=xdomdomyz|xyz=xyz|xyz
49 47 48 ax-mp xdomdomyz|xyz=xyz|xyz
50 mpt0 xyz|xyz=
51 45 49 50 3eqtri curry=
52 44 51 eqtrdi M=curryM=
53 oveq2 I=RfreeLModI=RfreeLMod
54 52 53 breqan12d M=I=curryMLIndFRfreeLModILIndFRfreeLMod
55 43 54 bibi12d M=I=MUnitIMatRcurryMLIndFRfreeLModIUnitMatRLIndFRfreeLMod
56 55 biimparc UnitMatRLIndFRfreeLModM=I=MUnitIMatRcurryMLIndFRfreeLModI
57 40 56 sylan RFieldM=I=MUnitIMatRcurryMLIndFRfreeLModI
58 57 anassrs RFieldM=I=MUnitIMatRcurryMLIndFRfreeLModI
59 8 58 sylancom RFieldMBaseIMatRI=MUnitIMatRcurryMLIndFRfreeLModI
60 9 simprbi RFieldRCRing
61 eqid IMatR=IMatR
62 eqid ImaDetR=ImaDetR
63 eqid BaseIMatR=BaseIMatR
64 eqid UnitIMatR=UnitIMatR
65 eqid UnitR=UnitR
66 61 62 63 64 65 matunit RCRingMBaseIMatRMUnitIMatRImaDetRMUnitR
67 60 66 sylan RFieldMBaseIMatRMUnitIMatRImaDetRMUnitR
68 67 adantr RFieldMBaseIMatRIMUnitIMatRImaDetRMUnitR
69 eqid BaseR=BaseR
70 eqid 0R=0R
71 69 65 70 drngunit RDivRingImaDetRMUnitRImaDetRMBaseRImaDetRM0R
72 10 71 syl RFieldImaDetRMUnitRImaDetRMBaseRImaDetRM0R
73 72 adantr RFieldMBaseIMatRImaDetRMUnitRImaDetRMBaseRImaDetRM0R
74 62 61 63 69 mdetcl RCRingMBaseIMatRImaDetRMBaseR
75 60 74 sylan RFieldMBaseIMatRImaDetRMBaseR
76 75 biantrurd RFieldMBaseIMatRImaDetRM0RImaDetRMBaseRImaDetRM0R
77 73 76 bitr4d RFieldMBaseIMatRImaDetRMUnitRImaDetRM0R
78 77 adantr RFieldMBaseIMatRIImaDetRMUnitRImaDetRM0R
79 61 63 matrcl MBaseIMatRIFinRV
80 79 simpld MBaseIMatRIFin
81 80 pm4.71i MBaseIMatRMBaseIMatRIFin
82 xpfi IFinIFinI×IFin
83 82 anidms IFinI×IFin
84 eqid RfreeLModI×I=RfreeLModI×I
85 84 69 frlmfibas RFieldI×IFinBaseRI×I=BaseRfreeLModI×I
86 83 85 sylan2 RFieldIFinBaseRI×I=BaseRfreeLModI×I
87 61 84 matbas IFinRFieldBaseRfreeLModI×I=BaseIMatR
88 87 ancoms RFieldIFinBaseRfreeLModI×I=BaseIMatR
89 86 88 eqtrd RFieldIFinBaseRI×I=BaseIMatR
90 89 eleq2d RFieldIFinMBaseRI×IMBaseIMatR
91 fvex BaseRV
92 elmapg BaseRVI×IFinMBaseRI×IM:I×IBaseR
93 91 83 92 sylancr IFinMBaseRI×IM:I×IBaseR
94 93 adantl RFieldIFinMBaseRI×IM:I×IBaseR
95 90 94 bitr3d RFieldIFinMBaseIMatRM:I×IBaseR
96 95 ex RFieldIFinMBaseIMatRM:I×IBaseR
97 96 pm5.32rd RFieldMBaseIMatRIFinM:I×IBaseRIFin
98 81 97 bitrid RFieldMBaseIMatRM:I×IBaseRIFin
99 98 biimpd RFieldMBaseIMatRM:I×IBaseRIFin
100 99 imdistani RFieldMBaseIMatRRFieldM:I×IBaseRIFin
101 anass RFieldM:I×IBaseRIFinRFieldM:I×IBaseRIFin
102 100 101 sylibr RFieldMBaseIMatRRFieldM:I×IBaseRIFin
103 eldifsn IFinIFinI
104 matunitlindflem1 RFieldM:I×IBaseRIFin¬curryMLIndFRfreeLModIImaDetRM=0R
105 104 necon1ad RFieldM:I×IBaseRIFinImaDetRM0RcurryMLIndFRfreeLModI
106 103 105 sylan2br RFieldM:I×IBaseRIFinIImaDetRM0RcurryMLIndFRfreeLModI
107 106 anassrs RFieldM:I×IBaseRIFinIImaDetRM0RcurryMLIndFRfreeLModI
108 102 107 sylan RFieldMBaseIMatRIImaDetRM0RcurryMLIndFRfreeLModI
109 78 108 sylbid RFieldMBaseIMatRIImaDetRMUnitRcurryMLIndFRfreeLModI
110 matunitlindflem2 RFieldMBaseIMatRIcurryMLIndFRfreeLModIImaDetRMUnitR
111 110 ex RFieldMBaseIMatRIcurryMLIndFRfreeLModIImaDetRMUnitR
112 109 111 impbid RFieldMBaseIMatRIImaDetRMUnitRcurryMLIndFRfreeLModI
113 68 112 bitrd RFieldMBaseIMatRIMUnitIMatRcurryMLIndFRfreeLModI
114 59 113 pm2.61dane RFieldMBaseIMatRMUnitIMatRcurryMLIndFRfreeLModI