Metamath Proof Explorer


Theorem mbfi1flimlem

Description: Lemma for mbfi1flim . (Contributed by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses mbfi1flim.1 φFMblFn
mbfi1flimlem.2 φF:
Assertion mbfi1flimlem φgg:dom1xngnxFx

Proof

Step Hyp Ref Expression
1 mbfi1flim.1 φFMblFn
2 mbfi1flimlem.2 φF:
3 2 ffvelcdmda φyFy
4 2 feqmptd φF=yFy
5 4 1 eqeltrrd φyFyMblFn
6 3 5 mbfpos φyif0FyFy0MblFn
7 0re 0
8 ifcl Fy0if0FyFy0
9 3 7 8 sylancl φyif0FyFy0
10 max1 0Fy0if0FyFy0
11 7 3 10 sylancr φy0if0FyFy0
12 elrege0 if0FyFy00+∞if0FyFy00if0FyFy0
13 9 11 12 sylanbrc φyif0FyFy00+∞
14 13 fmpttd φyif0FyFy0:0+∞
15 6 14 mbfi1fseq φff:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0x
16 3 renegcld φyFy
17 3 5 mbfneg φyFyMblFn
18 16 17 mbfpos φyif0FyFy0MblFn
19 ifcl Fy0if0FyFy0
20 16 7 19 sylancl φyif0FyFy0
21 max1 0Fy0if0FyFy0
22 7 16 21 sylancr φy0if0FyFy0
23 elrege0 if0FyFy00+∞if0FyFy00if0FyFy0
24 20 22 23 sylanbrc φyif0FyFy00+∞
25 24 fmpttd φyif0FyFy0:0+∞
26 18 25 mbfi1fseq φhh:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0x
27 exdistrv fhf:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0xh:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0xff:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0xhh:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0x
28 3simpb f:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0xf:dom1xnfnxyif0FyFy0x
29 3simpb h:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0xh:dom1xnhnxyif0FyFy0x
30 28 29 anim12i f:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0xh:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0xf:dom1xnfnxyif0FyFy0xh:dom1xnhnxyif0FyFy0x
31 an4 f:dom1xnfnxyif0FyFy0xh:dom1xnhnxyif0FyFy0xf:dom1h:dom1xnfnxyif0FyFy0xxnhnxyif0FyFy0x
32 30 31 sylib f:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0xh:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0xf:dom1h:dom1xnfnxyif0FyFy0xxnhnxyif0FyFy0x
33 r19.26 xnfnxyif0FyFy0xnhnxyif0FyFy0xxnfnxyif0FyFy0xxnhnxyif0FyFy0x
34 i1fsub xdom1ydom1xfydom1
35 34 adantl φf:dom1h:dom1xdom1ydom1xfydom1
36 simprl φf:dom1h:dom1f:dom1
37 simprr φf:dom1h:dom1h:dom1
38 nnex V
39 38 a1i φf:dom1h:dom1V
40 inidm =
41 35 36 37 39 39 40 off φf:dom1h:dom1fffh:dom1
42 fveq2 y=xFy=Fx
43 42 breq2d y=x0Fy0Fx
44 43 42 ifbieq1d y=xif0FyFy0=if0FxFx0
45 eqid yif0FyFy0=yif0FyFy0
46 fvex FxV
47 c0ex 0V
48 46 47 ifex if0FxFx0V
49 44 45 48 fvmpt xyif0FyFy0x=if0FxFx0
50 49 breq2d xnfnxyif0FyFy0xnfnxif0FxFx0
51 42 negeqd y=xFy=Fx
52 51 breq2d y=x0Fy0Fx
53 52 51 ifbieq1d y=xif0FyFy0=if0FxFx0
54 eqid yif0FyFy0=yif0FyFy0
55 negex FxV
56 55 47 ifex if0FxFx0V
57 53 54 56 fvmpt xyif0FyFy0x=if0FxFx0
58 57 breq2d xnhnxyif0FyFy0xnhnxif0FxFx0
59 50 58 anbi12d xnfnxyif0FyFy0xnhnxyif0FyFy0xnfnxif0FxFx0nhnxif0FxFx0
60 59 adantl φf:dom1h:dom1xnfnxyif0FyFy0xnhnxyif0FyFy0xnfnxif0FxFx0nhnxif0FxFx0
61 nnuz =1
62 1zzd φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx01
63 simprl φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0nfnxif0FxFx0
64 38 mptex nfffhnxV
65 64 a1i φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0nfffhnxV
66 simprr φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0nhnxif0FxFx0
67 36 ffvelcdmda φf:dom1h:dom1nfndom1
68 i1ff fndom1fn:
69 67 68 syl φf:dom1h:dom1nfn:
70 69 ffvelcdmda φf:dom1h:dom1nxfnx
71 70 an32s φf:dom1h:dom1xnfnx
72 71 recnd φf:dom1h:dom1xnfnx
73 72 fmpttd φf:dom1h:dom1xnfnx:
74 73 adantr φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0nfnx:
75 74 ffvelcdmda φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0knfnxk
76 37 ffvelcdmda φf:dom1h:dom1nhndom1
77 i1ff hndom1hn:
78 76 77 syl φf:dom1h:dom1nhn:
79 78 ffvelcdmda φf:dom1h:dom1nxhnx
80 79 an32s φf:dom1h:dom1xnhnx
81 80 recnd φf:dom1h:dom1xnhnx
82 81 fmpttd φf:dom1h:dom1xnhnx:
83 82 adantr φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0nhnx:
84 83 ffvelcdmda φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0knhnxk
85 36 ffnd φf:dom1h:dom1fFn
86 37 ffnd φf:dom1h:dom1hFn
87 eqidd φf:dom1h:dom1kfk=fk
88 eqidd φf:dom1h:dom1khk=hk
89 85 86 39 39 40 87 88 ofval φf:dom1h:dom1kfffhk=fkfhk
90 89 fveq1d φf:dom1h:dom1kfffhkx=fkfhkx
91 90 adantr φf:dom1h:dom1kxfffhkx=fkfhkx
92 36 ffvelcdmda φf:dom1h:dom1kfkdom1
93 i1ff fkdom1fk:
94 ffn fk:fkFn
95 92 93 94 3syl φf:dom1h:dom1kfkFn
96 37 ffvelcdmda φf:dom1h:dom1khkdom1
97 i1ff hkdom1hk:
98 ffn hk:hkFn
99 96 97 98 3syl φf:dom1h:dom1khkFn
100 reex V
101 100 a1i φf:dom1h:dom1kV
102 inidm =
103 eqidd φf:dom1h:dom1kxfkx=fkx
104 eqidd φf:dom1h:dom1kxhkx=hkx
105 95 99 101 101 102 103 104 ofval φf:dom1h:dom1kxfkfhkx=fkxhkx
106 91 105 eqtrd φf:dom1h:dom1kxfffhkx=fkxhkx
107 106 an32s φf:dom1h:dom1xkfffhkx=fkxhkx
108 fveq2 n=kfffhn=fffhk
109 108 fveq1d n=kfffhnx=fffhkx
110 eqid nfffhnx=nfffhnx
111 fvex fffhkxV
112 109 110 111 fvmpt knfffhnxk=fffhkx
113 112 adantl φf:dom1h:dom1xknfffhnxk=fffhkx
114 fveq2 n=kfn=fk
115 114 fveq1d n=kfnx=fkx
116 eqid nfnx=nfnx
117 fvex fkxV
118 115 116 117 fvmpt knfnxk=fkx
119 fveq2 n=khn=hk
120 119 fveq1d n=khnx=hkx
121 eqid nhnx=nhnx
122 fvex hkxV
123 120 121 122 fvmpt knhnxk=hkx
124 118 123 oveq12d knfnxknhnxk=fkxhkx
125 124 adantl φf:dom1h:dom1xknfnxknhnxk=fkxhkx
126 107 113 125 3eqtr4d φf:dom1h:dom1xknfffhnxk=nfnxknhnxk
127 126 adantlr φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0knfffhnxk=nfnxknhnxk
128 61 62 63 65 66 75 84 127 climsub φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0nfffhnxif0FxFx0if0FxFx0
129 2 adantr φf:dom1h:dom1F:
130 129 ffvelcdmda φf:dom1h:dom1xFx
131 max0sub Fxif0FxFx0if0FxFx0=Fx
132 130 131 syl φf:dom1h:dom1xif0FxFx0if0FxFx0=Fx
133 132 adantr φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0if0FxFx0if0FxFx0=Fx
134 128 133 breqtrd φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0nfffhnxFx
135 134 ex φf:dom1h:dom1xnfnxif0FxFx0nhnxif0FxFx0nfffhnxFx
136 60 135 sylbid φf:dom1h:dom1xnfnxyif0FyFy0xnhnxyif0FyFy0xnfffhnxFx
137 136 ralimdva φf:dom1h:dom1xnfnxyif0FyFy0xnhnxyif0FyFy0xxnfffhnxFx
138 ovex fffhV
139 feq1 g=fffhg:dom1fffh:dom1
140 fveq1 g=fffhgn=fffhn
141 140 fveq1d g=fffhgnx=fffhnx
142 141 mpteq2dv g=fffhngnx=nfffhnx
143 142 breq1d g=fffhngnxFxnfffhnxFx
144 143 ralbidv g=fffhxngnxFxxnfffhnxFx
145 139 144 anbi12d g=fffhg:dom1xngnxFxfffh:dom1xnfffhnxFx
146 138 145 spcev fffh:dom1xnfffhnxFxgg:dom1xngnxFx
147 41 137 146 syl6an φf:dom1h:dom1xnfnxyif0FyFy0xnhnxyif0FyFy0xgg:dom1xngnxFx
148 33 147 biimtrrid φf:dom1h:dom1xnfnxyif0FyFy0xxnhnxyif0FyFy0xgg:dom1xngnxFx
149 148 expimpd φf:dom1h:dom1xnfnxyif0FyFy0xxnhnxyif0FyFy0xgg:dom1xngnxFx
150 32 149 syl5 φf:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0xh:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0xgg:dom1xngnxFx
151 150 exlimdvv φfhf:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0xh:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0xgg:dom1xngnxFx
152 27 151 biimtrrid φff:dom1n0𝑝ffnfnffn+1xnfnxyif0FyFy0xhh:dom1n0𝑝fhnhnfhn+1xnhnxyif0FyFy0xgg:dom1xngnxFx
153 15 26 152 mp2and φgg:dom1xngnxFx