| Step | Hyp | Ref | Expression | 
						
							| 1 |  | methaus.1 |  | 
						
							| 2 | 1 | mopntop |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | simpll |  | 
						
							| 5 |  | simplr1 |  | 
						
							| 6 |  | simprr |  | 
						
							| 7 | 5 6 | sseldd |  | 
						
							| 8 |  | simprl |  | 
						
							| 9 | 8 | nnrpd |  | 
						
							| 10 | 9 | rpreccld |  | 
						
							| 11 | 10 | rpxrd |  | 
						
							| 12 | 1 | blopn |  | 
						
							| 13 | 4 7 11 12 | syl3anc |  | 
						
							| 14 | 13 | ralrimivva |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | fmpo |  | 
						
							| 17 | 14 16 | sylib |  | 
						
							| 18 | 17 | frnd |  | 
						
							| 19 |  | simpll |  | 
						
							| 20 |  | simprl |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 | 1 | mopni2 |  | 
						
							| 23 | 19 20 21 22 | syl3anc |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 | 24 | rphalfcld |  | 
						
							| 26 |  | elrp |  | 
						
							| 27 |  | nnrecl |  | 
						
							| 28 | 26 27 | sylbi |  | 
						
							| 29 | 25 28 | syl |  | 
						
							| 30 | 3 | ad2antrr |  | 
						
							| 31 |  | simpr1 |  | 
						
							| 32 | 31 | ad2antrr |  | 
						
							| 33 | 1 | mopnuni |  | 
						
							| 34 | 33 | ad3antrrr |  | 
						
							| 35 | 32 34 | sseqtrd |  | 
						
							| 36 |  | simplrr |  | 
						
							| 37 |  | simplrl |  | 
						
							| 38 |  | elunii |  | 
						
							| 39 | 36 37 38 | syl2anc |  | 
						
							| 40 | 39 34 | eleqtrrd |  | 
						
							| 41 |  | simpr3 |  | 
						
							| 42 | 41 | ad2antrr |  | 
						
							| 43 | 40 42 | eleqtrrd |  | 
						
							| 44 | 19 | adantr |  | 
						
							| 45 |  | simprrl |  | 
						
							| 46 | 45 | nnrpd |  | 
						
							| 47 | 46 | rpreccld |  | 
						
							| 48 | 47 | rpxrd |  | 
						
							| 49 | 1 | blopn |  | 
						
							| 50 | 44 40 48 49 | syl3anc |  | 
						
							| 51 |  | blcntr |  | 
						
							| 52 | 44 40 47 51 | syl3anc |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 | 53 | clsndisj |  | 
						
							| 55 | 30 35 43 50 52 54 | syl32anc |  | 
						
							| 56 |  | n0 |  | 
						
							| 57 | 55 56 | sylib |  | 
						
							| 58 | 45 | adantr |  | 
						
							| 59 |  | simpr |  | 
						
							| 60 | 59 | elin2d |  | 
						
							| 61 |  | eqidd |  | 
						
							| 62 |  | oveq2 |  | 
						
							| 63 | 62 | oveq2d |  | 
						
							| 64 | 63 | eqeq2d |  | 
						
							| 65 |  | oveq1 |  | 
						
							| 66 | 65 | eqeq2d |  | 
						
							| 67 | 64 66 | rspc2ev |  | 
						
							| 68 | 58 60 61 67 | syl3anc |  | 
						
							| 69 |  | ovex |  | 
						
							| 70 |  | eqeq1 |  | 
						
							| 71 | 70 | 2rexbidv |  | 
						
							| 72 | 15 | rnmpo |  | 
						
							| 73 | 69 71 72 | elab2 |  | 
						
							| 74 | 68 73 | sylibr |  | 
						
							| 75 | 59 | elin1d |  | 
						
							| 76 | 44 | adantr |  | 
						
							| 77 | 48 | adantr |  | 
						
							| 78 | 40 | adantr |  | 
						
							| 79 | 32 | adantr |  | 
						
							| 80 | 79 60 | sseldd |  | 
						
							| 81 |  | blcom |  | 
						
							| 82 | 76 77 78 80 81 | syl22anc |  | 
						
							| 83 | 75 82 | mpbid |  | 
						
							| 84 |  | simprll |  | 
						
							| 85 | 84 | adantr |  | 
						
							| 86 | 85 | rphalfcld |  | 
						
							| 87 | 86 | rpxrd |  | 
						
							| 88 |  | simprrr |  | 
						
							| 89 | 84 | rphalfcld |  | 
						
							| 90 |  | rpre |  | 
						
							| 91 |  | rpre |  | 
						
							| 92 |  | ltle |  | 
						
							| 93 | 90 91 92 | syl2an |  | 
						
							| 94 | 47 89 93 | syl2anc |  | 
						
							| 95 | 88 94 | mpd |  | 
						
							| 96 | 95 | adantr |  | 
						
							| 97 |  | ssbl |  | 
						
							| 98 | 76 80 77 87 96 97 | syl221anc |  | 
						
							| 99 | 85 | rpred |  | 
						
							| 100 | 98 83 | sseldd |  | 
						
							| 101 |  | blhalf |  | 
						
							| 102 | 76 80 99 100 101 | syl22anc |  | 
						
							| 103 |  | simprlr |  | 
						
							| 104 | 103 | adantr |  | 
						
							| 105 | 102 104 | sstrd |  | 
						
							| 106 | 98 105 | sstrd |  | 
						
							| 107 |  | eleq2 |  | 
						
							| 108 |  | sseq1 |  | 
						
							| 109 | 107 108 | anbi12d |  | 
						
							| 110 | 109 | rspcev |  | 
						
							| 111 | 74 83 106 110 | syl12anc |  | 
						
							| 112 | 57 111 | exlimddv |  | 
						
							| 113 | 112 | anassrs |  | 
						
							| 114 | 29 113 | rexlimddv |  | 
						
							| 115 | 23 114 | rexlimddv |  | 
						
							| 116 | 115 | ralrimivva |  | 
						
							| 117 |  | basgen2 |  | 
						
							| 118 | 3 18 116 117 | syl3anc |  | 
						
							| 119 | 118 3 | eqeltrd |  | 
						
							| 120 |  | tgclb |  | 
						
							| 121 | 119 120 | sylibr |  | 
						
							| 122 |  | omelon |  | 
						
							| 123 |  | simpr2 |  | 
						
							| 124 |  | nnex |  | 
						
							| 125 | 124 | xpdom2 |  | 
						
							| 126 | 123 125 | syl |  | 
						
							| 127 |  | nnenom |  | 
						
							| 128 |  | omex |  | 
						
							| 129 | 128 | enref |  | 
						
							| 130 |  | xpen |  | 
						
							| 131 | 127 129 130 | mp2an |  | 
						
							| 132 |  | xpomen |  | 
						
							| 133 | 131 132 | entri |  | 
						
							| 134 |  | domentr |  | 
						
							| 135 | 126 133 134 | sylancl |  | 
						
							| 136 |  | ondomen |  | 
						
							| 137 | 122 135 136 | sylancr |  | 
						
							| 138 | 17 | ffnd |  | 
						
							| 139 |  | dffn4 |  | 
						
							| 140 | 138 139 | sylib |  | 
						
							| 141 |  | fodomnum |  | 
						
							| 142 | 137 140 141 | sylc |  | 
						
							| 143 |  | domtr |  | 
						
							| 144 | 142 135 143 | syl2anc |  | 
						
							| 145 |  | 2ndci |  | 
						
							| 146 | 121 144 145 | syl2anc |  | 
						
							| 147 | 118 146 | eqeltrrd |  |