Metamath Proof Explorer


Theorem monotoddzzfi

Description: A function which is odd and monotonic on NN0 is monotonic on ZZ . This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014)

Ref Expression
Hypotheses monotoddzzfi.1 φxFx
monotoddzzfi.2 φxFx=Fx
monotoddzzfi.3 φx0y0x<yFx<Fy
Assertion monotoddzzfi φABA<BFA<FB

Proof

Step Hyp Ref Expression
1 monotoddzzfi.1 φxFx
2 monotoddzzfi.2 φxFx=Fx
3 monotoddzzfi.3 φx0y0x<yFx<Fy
4 fveq2 a=bFa=Fb
5 fveq2 a=AFa=FA
6 fveq2 a=BFa=FB
7 zssre
8 eleq1 x=axa
9 8 anbi2d x=aφxφa
10 fveq2 x=aFx=Fa
11 10 eleq1d x=aFxFa
12 9 11 imbi12d x=aφxFxφaFa
13 12 1 chvarvv φaFa
14 elznn aaaa0
15 14 simprbi aaa0
16 elznn bbbb0
17 16 simprbi bbb0
18 15 17 anim12i abaa0bb0
19 18 adantl φabaa0bb0
20 simpll φababφ
21 nnnn0 aa0
22 21 ad2antrl φababa0
23 nnnn0 bb0
24 23 ad2antll φababb0
25 vex aV
26 vex bV
27 simpl x=ay=bx=a
28 27 eleq1d x=ay=bx0a0
29 simpr x=ay=by=b
30 29 eleq1d x=ay=by0b0
31 28 30 3anbi23d x=ay=bφx0y0φa0b0
32 breq12 x=ay=bx<ya<b
33 fveq2 y=bFy=Fb
34 10 33 breqan12d x=ay=bFx<FyFa<Fb
35 32 34 imbi12d x=ay=bx<yFx<Fya<bFa<Fb
36 31 35 imbi12d x=ay=bφx0y0x<yFx<Fyφa0b0a<bFa<Fb
37 25 26 36 3 vtocl2 φa0b0a<bFa<Fb
38 20 22 24 37 syl3anc φababa<bFa<Fb
39 38 ex φababa<bFa<Fb
40 13 adantrr φabFa
41 40 adantr φaba0bFa
42 0red φaba0b0
43 eleq1 x=bxb
44 43 anbi2d x=bφxφb
45 fveq2 x=bFx=Fb
46 45 eleq1d x=bFxFb
47 44 46 imbi12d x=bφxFxφbFb
48 47 1 chvarvv φbFb
49 48 adantrl φabFb
50 49 adantr φaba0bFb
51 0red φaba0ba0
52 znegcl aa
53 52 ad2antrl φaba
54 negex aV
55 eleq1 x=axa
56 55 anbi2d x=aφxφa
57 fveq2 x=aFx=Fa
58 57 eleq1d x=aFxFa
59 56 58 imbi12d x=aφxFxφaFa
60 54 59 1 vtocl φaFa
61 53 60 syldan φabFa
62 61 ad2antrr φaba0baFa
63 0z 0
64 c0ex 0V
65 eleq1 x=0x0
66 65 anbi2d x=0φxφ0
67 fveq2 x=0Fx=F0
68 67 eleq1d x=0FxF0
69 66 68 imbi12d x=0φxFxφ0F0
70 64 69 1 vtocl φ0F0
71 63 70 mpan2 φF0
72 71 recnd φF0
73 neg0 0=0
74 73 fveq2i F0=F0
75 negeq x=0x=0
76 75 fveq2d x=0Fx=F0
77 67 negeqd x=0Fx=F0
78 76 77 eqeq12d x=0Fx=FxF0=F0
79 66 78 imbi12d x=0φxFx=Fxφ0F0=F0
80 64 79 2 vtocl φ0F0=F0
81 63 80 mpan2 φF0=F0
82 74 81 eqtr3id φF0=F0
83 72 82 eqnegad φF0=0
84 83 adantr φabF0=0
85 84 ad2antrr φaba0baF0=0
86 nngt0 a0<a
87 86 adantl φaba0ba0<a
88 simplll φaba0baφ
89 0nn0 00
90 89 a1i φaba0ba00
91 simplrl φaba0baa0
92 simpl x=0y=ax=0
93 92 eleq1d x=0y=ax000
94 simpr x=0y=ay=a
95 94 eleq1d x=0y=ay0a0
96 93 95 3anbi23d x=0y=aφx0y0φ00a0
97 breq12 x=0y=ax<y0<a
98 92 fveq2d x=0y=aFx=F0
99 94 fveq2d x=0y=aFy=Fa
100 98 99 breq12d x=0y=aFx<FyF0<Fa
101 97 100 imbi12d x=0y=ax<yFx<Fy0<aF0<Fa
102 96 101 imbi12d x=0y=aφx0y0x<yFx<Fyφ00a00<aF0<Fa
103 64 54 102 3 vtocl2 φ00a00<aF0<Fa
104 88 90 91 103 syl3anc φaba0ba0<aF0<Fa
105 87 104 mpd φaba0baF0<Fa
106 85 105 eqbrtrrd φaba0ba0<Fa
107 51 62 106 ltled φaba0ba0Fa
108 0le0 00
109 84 ad2antrr φaba0ba=0F0=0
110 108 109 breqtrrid φaba0ba=00F0
111 fveq2 a=0Fa=F0
112 111 breq2d a=00Fa0F0
113 112 adantl φaba0ba=00Fa0F0
114 110 113 mpbird φaba0ba=00Fa
115 elnn0 a0aa=0
116 115 biimpi a0aa=0
117 116 ad2antrl φaba0baa=0
118 107 114 117 mpjaodan φaba0b0Fa
119 negeq x=ax=a
120 119 fveq2d x=aFx=Fa
121 10 negeqd x=aFx=Fa
122 120 121 eqeq12d x=aFx=FxFa=Fa
123 9 122 imbi12d x=aφxFx=FxφaFa=Fa
124 123 2 chvarvv φaFa=Fa
125 124 adantrr φabFa=Fa
126 125 adantr φaba0bFa=Fa
127 118 126 breqtrd φaba0b0Fa
128 41 le0neg1d φaba0bFa00Fa
129 127 128 mpbird φaba0bFa0
130 84 adantr φaba0bF0=0
131 nngt0 b0<b
132 131 ad2antll φaba0b0<b
133 simpll φaba0bφ
134 89 a1i φaba0b00
135 23 ad2antll φaba0bb0
136 simpl x=0y=bx=0
137 136 eleq1d x=0y=bx000
138 simpr x=0y=by=b
139 138 eleq1d x=0y=by0b0
140 137 139 3anbi23d x=0y=bφx0y0φ00b0
141 breq12 x=0y=bx<y0<b
142 67 33 breqan12d x=0y=bFx<FyF0<Fb
143 141 142 imbi12d x=0y=bx<yFx<Fy0<bF0<Fb
144 140 143 imbi12d x=0y=bφx0y0x<yFx<Fyφ00b00<bF0<Fb
145 64 26 144 3 vtocl2 φ00b00<bF0<Fb
146 133 134 135 145 syl3anc φaba0b0<bF0<Fb
147 132 146 mpd φaba0bF0<Fb
148 130 147 eqbrtrrd φaba0b0<Fb
149 41 42 50 129 148 lelttrd φaba0bFa<Fb
150 149 a1d φaba0ba<bFa<Fb
151 150 ex φaba0ba<bFa<Fb
152 simp3 φabab0a<ba<b
153 zre bb
154 153 adantl abb
155 154 ad2antlr φabab0b
156 1red φabab01
157 nnre aa
158 157 ad2antrl φabab0a
159 0red φabab00
160 nn0ge0 b00b
161 160 ad2antll φabab00b
162 155 le0neg1d φabab0b00b
163 161 162 mpbird φabab0b0
164 0le1 01
165 164 a1i φabab001
166 155 159 156 163 165 letrd φabab0b1
167 nnge1 a1a
168 167 ad2antrl φabab01a
169 155 156 158 166 168 letrd φabab0ba
170 155 158 lenltd φabab0ba¬a<b
171 169 170 mpbid φabab0¬a<b
172 171 3adant3 φabab0a<b¬a<b
173 152 172 pm2.21dd φabab0a<bFa<Fb
174 173 3exp φabab0a<bFa<Fb
175 negex bV
176 simpl x=by=ax=b
177 176 eleq1d x=by=ax0b0
178 simpr x=by=ay=a
179 178 eleq1d x=by=ay0a0
180 177 179 3anbi23d x=by=aφx0y0φb0a0
181 breq12 x=by=ax<yb<a
182 fveq2 x=bFx=Fb
183 fveq2 y=aFy=Fa
184 182 183 breqan12d x=by=aFx<FyFb<Fa
185 181 184 imbi12d x=by=ax<yFx<Fyb<aFb<Fa
186 180 185 imbi12d x=by=aφx0y0x<yFx<Fyφb0a0b<aFb<Fa
187 175 54 186 3 vtocl2 φb0a0b<aFb<Fa
188 187 3com23 φa0b0b<aFb<Fa
189 188 3expb φa0b0b<aFb<Fa
190 189 adantlr φaba0b0b<aFb<Fa
191 negeq x=bx=b
192 191 fveq2d x=bFx=Fb
193 45 negeqd x=bFx=Fb
194 192 193 eqeq12d x=bFx=FxFb=Fb
195 44 194 imbi12d x=bφxFx=FxφbFb=Fb
196 195 2 chvarvv φbFb=Fb
197 196 adantrl φabFb=Fb
198 197 adantr φaba0b0Fb=Fb
199 125 adantr φaba0b0Fa=Fa
200 198 199 breq12d φaba0b0Fb<FaFb<Fa
201 190 200 sylibd φaba0b0b<aFb<Fa
202 zre aa
203 202 ad2antrl φaba
204 203 adantr φaba0b0a
205 154 ad2antlr φaba0b0b
206 204 205 ltnegd φaba0b0a<bb<a
207 40 adantr φaba0b0Fa
208 49 adantr φaba0b0Fb
209 207 208 ltnegd φaba0b0Fa<FbFb<Fa
210 201 206 209 3imtr4d φaba0b0a<bFa<Fb
211 210 ex φaba0b0a<bFa<Fb
212 39 151 174 211 ccased φabaa0bb0a<bFa<Fb
213 19 212 mpd φaba<bFa<Fb
214 4 5 6 7 13 213 ltord1 φABA<BFA<FB
215 214 3impb φABA<BFA<FB