Metamath Proof Explorer


Theorem nrginvrcn

Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nrginvrcn.x X=BaseR
nrginvrcn.u U=UnitR
nrginvrcn.i I=invrR
nrginvrcn.j J=TopOpenR
Assertion nrginvrcn RNrmRingIJ𝑡UCnJ𝑡U

Proof

Step Hyp Ref Expression
1 nrginvrcn.x X=BaseR
2 nrginvrcn.u U=UnitR
3 nrginvrcn.i I=invrR
4 nrginvrcn.j J=TopOpenR
5 nrgring RNrmRingRRing
6 eqid mulGrpR𝑠U=mulGrpR𝑠U
7 2 6 unitgrp RRingmulGrpR𝑠UGrp
8 2 6 unitgrpbas U=BasemulGrpR𝑠U
9 2 6 3 invrfval I=invgmulGrpR𝑠U
10 8 9 grpinvf mulGrpR𝑠UGrpI:UU
11 5 7 10 3syl RNrmRingI:UU
12 1rp 1+
13 12 ne0ii +
14 5 ad2antrr RNrmRingxUr+yURRing
15 1 2 unitss UX
16 simplrl RNrmRingxUr+yUxU
17 15 16 sselid RNrmRingxUr+yUxX
18 simpr RNrmRingxUr+yUyU
19 15 18 sselid RNrmRingxUr+yUyX
20 eqid 1R=1R
21 eqid 0R=0R
22 1 20 21 ring1eq0 RRingxXyX1R=0Rx=y
23 14 17 19 22 syl3anc RNrmRingxUr+yU1R=0Rx=y
24 eqid Iy=Iy
25 nrgngp RNrmRingRNrmGrp
26 ngpms RNrmGrpRMetSp
27 msxms RMetSpR∞MetSp
28 25 26 27 3syl RNrmRingR∞MetSp
29 28 ad2antrr RNrmRingxUr+yUR∞MetSp
30 11 adantr RNrmRingxUr+I:UU
31 30 ffvelcdmda RNrmRingxUr+yUIyU
32 15 31 sselid RNrmRingxUr+yUIyX
33 eqid distR=distR
34 1 33 xmseq0 R∞MetSpIyXIyXIydistRIy=0Iy=Iy
35 29 32 32 34 syl3anc RNrmRingxUr+yUIydistRIy=0Iy=Iy
36 24 35 mpbiri RNrmRingxUr+yUIydistRIy=0
37 simplrr RNrmRingxUr+yUr+
38 37 rpgt0d RNrmRingxUr+yU0<r
39 36 38 eqbrtrd RNrmRingxUr+yUIydistRIy<r
40 fveq2 x=yIx=Iy
41 40 oveq1d x=yIxdistRIy=IydistRIy
42 41 breq1d x=yIxdistRIy<rIydistRIy<r
43 39 42 syl5ibrcom RNrmRingxUr+yUx=yIxdistRIy<r
44 23 43 syld RNrmRingxUr+yU1R=0RIxdistRIy<r
45 44 imp RNrmRingxUr+yU1R=0RIxdistRIy<r
46 45 an32s RNrmRingxUr+1R=0RyUIxdistRIy<r
47 46 a1d RNrmRingxUr+1R=0RyUxdistRy<sIxdistRIy<r
48 47 ralrimiva RNrmRingxUr+1R=0RyUxdistRy<sIxdistRIy<r
49 48 ralrimivw RNrmRingxUr+1R=0Rs+yUxdistRy<sIxdistRIy<r
50 r19.2z +s+yUxdistRy<sIxdistRIy<rs+yUxdistRy<sIxdistRIy<r
51 13 49 50 sylancr RNrmRingxUr+1R=0Rs+yUxdistRy<sIxdistRIy<r
52 eqid normR=normR
53 simpll RNrmRingxUr+1R0RRNrmRing
54 5 ad2antrr RNrmRingxUr+1R0RRRing
55 simpr RNrmRingxUr+1R0R1R0R
56 20 21 isnzr RNzRingRRing1R0R
57 54 55 56 sylanbrc RNrmRingxUr+1R0RRNzRing
58 simplrl RNrmRingxUr+1R0RxU
59 simplrr RNrmRingxUr+1R0Rr+
60 eqid if1normRxr1normRxrnormRx2=if1normRxr1normRxrnormRx2
61 1 2 3 52 33 53 57 58 59 60 nrginvrcnlem RNrmRingxUr+1R0Rs+yUxdistRy<sIxdistRIy<r
62 51 61 pm2.61dane RNrmRingxUr+s+yUxdistRy<sIxdistRIy<r
63 16 18 ovresd RNrmRingxUr+yUxdistRU×Uy=xdistRy
64 63 breq1d RNrmRingxUr+yUxdistRU×Uy<sxdistRy<s
65 simpl xUr+xU
66 ffvelcdm I:UUxUIxU
67 11 65 66 syl2an RNrmRingxUr+IxU
68 67 adantr RNrmRingxUr+yUIxU
69 68 31 ovresd RNrmRingxUr+yUIxdistRU×UIy=IxdistRIy
70 69 breq1d RNrmRingxUr+yUIxdistRU×UIy<rIxdistRIy<r
71 64 70 imbi12d RNrmRingxUr+yUxdistRU×Uy<sIxdistRU×UIy<rxdistRy<sIxdistRIy<r
72 71 ralbidva RNrmRingxUr+yUxdistRU×Uy<sIxdistRU×UIy<ryUxdistRy<sIxdistRIy<r
73 72 rexbidv RNrmRingxUr+s+yUxdistRU×Uy<sIxdistRU×UIy<rs+yUxdistRy<sIxdistRIy<r
74 62 73 mpbird RNrmRingxUr+s+yUxdistRU×Uy<sIxdistRU×UIy<r
75 74 ralrimivva RNrmRingxUr+s+yUxdistRU×Uy<sIxdistRU×UIy<r
76 xpss12 UXUXU×UX×X
77 15 15 76 mp2an U×UX×X
78 resabs1 U×UX×XdistRX×XU×U=distRU×U
79 77 78 ax-mp distRX×XU×U=distRU×U
80 eqid distRX×X=distRX×X
81 1 80 xmsxmet R∞MetSpdistRX×X∞MetX
82 25 26 27 81 4syl RNrmRingdistRX×X∞MetX
83 xmetres2 distRX×X∞MetXUXdistRX×XU×U∞MetU
84 82 15 83 sylancl RNrmRingdistRX×XU×U∞MetU
85 79 84 eqeltrrid RNrmRingdistRU×U∞MetU
86 eqid MetOpendistRU×U=MetOpendistRU×U
87 86 86 metcn distRU×U∞MetUdistRU×U∞MetUIMetOpendistRU×UCnMetOpendistRU×UI:UUxUr+s+yUxdistRU×Uy<sIxdistRU×UIy<r
88 85 85 87 syl2anc RNrmRingIMetOpendistRU×UCnMetOpendistRU×UI:UUxUr+s+yUxdistRU×Uy<sIxdistRU×UIy<r
89 11 75 88 mpbir2and RNrmRingIMetOpendistRU×UCnMetOpendistRU×U
90 4 1 80 mstopn RMetSpJ=MetOpendistRX×X
91 25 26 90 3syl RNrmRingJ=MetOpendistRX×X
92 91 oveq1d RNrmRingJ𝑡U=MetOpendistRX×X𝑡U
93 79 eqcomi distRU×U=distRX×XU×U
94 eqid MetOpendistRX×X=MetOpendistRX×X
95 93 94 86 metrest distRX×X∞MetXUXMetOpendistRX×X𝑡U=MetOpendistRU×U
96 82 15 95 sylancl RNrmRingMetOpendistRX×X𝑡U=MetOpendistRU×U
97 92 96 eqtrd RNrmRingJ𝑡U=MetOpendistRU×U
98 97 97 oveq12d RNrmRingJ𝑡UCnJ𝑡U=MetOpendistRU×UCnMetOpendistRU×U
99 89 98 eleqtrrd RNrmRingIJ𝑡UCnJ𝑡U