Metamath Proof Explorer


Theorem pellexlem5

Description: Lemma for pellex . Invoking fiphp3d , we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion pellexlem5 D¬Dxx0yz|yzy2Dz2=x

Proof

Step Hyp Ref Expression
1 pellexlem4 D¬Dyz|yzy2Dz20y2Dz2<1+2D
2 fzfi 1+2D1+2DFin
3 diffi 1+2D1+2DFin1+2D1+2D0Fin
4 2 3 mp1i D¬D1+2D1+2D0Fin
5 elopab ayz|yzy2Dz20y2Dz2<1+2Dyza=yzyzy2Dz20y2Dz2<1+2D
6 fveq2 a=yz1sta=1styz
7 6 oveq1d a=yz1sta2=1styz2
8 fveq2 a=yz2nda=2ndyz
9 8 oveq1d a=yz2nda2=2ndyz2
10 9 oveq2d a=yzD2nda2=D2ndyz2
11 7 10 oveq12d a=yz1sta2D2nda2=1styz2D2ndyz2
12 vex yV
13 vex zV
14 12 13 op1st 1styz=y
15 14 oveq1i 1styz2=y2
16 12 13 op2nd 2ndyz=z
17 16 oveq1i 2ndyz2=z2
18 17 oveq2i D2ndyz2=Dz2
19 15 18 oveq12i 1styz2D2ndyz2=y2Dz2
20 11 19 eqtrdi a=yz1sta2D2nda2=y2Dz2
21 20 ad2antrl D¬Da=yzyzy2Dz20y2Dz2<1+2D1sta2D2nda2=y2Dz2
22 simprrl Da=yzyzy2Dz20y2Dz2<1+2Dyz
23 simpl Da=yzyzy2Dz20y2Dz2<1+2DD
24 simprr yzy2Dz20y2Dz2<1+2Dy2Dz2<1+2D
25 24 ad2antll Da=yzyzy2Dz20y2Dz2<1+2Dy2Dz2<1+2D
26 nnz yy
27 26 ad2antrr yzDy2Dz2<1+2Dy
28 zsqcl yy2
29 27 28 syl yzDy2Dz2<1+2Dy2
30 nnz DD
31 30 ad2antrl yzDy2Dz2<1+2DD
32 simplr yzDy2Dz2<1+2Dz
33 32 nnzd yzDy2Dz2<1+2Dz
34 zsqcl zz2
35 33 34 syl yzDy2Dz2<1+2Dz2
36 31 35 zmulcld yzDy2Dz2<1+2DDz2
37 29 36 zsubcld yzDy2Dz2<1+2Dy2Dz2
38 1re 1
39 2re 2
40 nnre DD
41 40 ad2antrl yzDy2Dz2<1+2DD
42 nnnn0 DD0
43 42 ad2antrl yzDy2Dz2<1+2DD0
44 43 nn0ge0d yzDy2Dz2<1+2D0D
45 41 44 resqrtcld yzDy2Dz2<1+2DD
46 remulcl 2D2D
47 39 45 46 sylancr yzDy2Dz2<1+2D2D
48 readdcl 12D1+2D
49 38 47 48 sylancr yzDy2Dz2<1+2D1+2D
50 49 flcld yzDy2Dz2<1+2D1+2D
51 50 znegcld yzDy2Dz2<1+2D1+2D
52 37 zred yzDy2Dz2<1+2Dy2Dz2
53 50 zred yzDy2Dz2<1+2D1+2D
54 nn0abscl y2Dz2y2Dz20
55 37 54 syl yzDy2Dz2<1+2Dy2Dz20
56 55 nn0zd yzDy2Dz2<1+2Dy2Dz2
57 56 zred yzDy2Dz2<1+2Dy2Dz2
58 peano2re 1+2D1+2D+1
59 53 58 syl yzDy2Dz2<1+2D1+2D+1
60 simprr yzDy2Dz2<1+2Dy2Dz2<1+2D
61 flltp1 1+2D1+2D<1+2D+1
62 49 61 syl yzDy2Dz2<1+2D1+2D<1+2D+1
63 57 49 59 60 62 lttrd yzDy2Dz2<1+2Dy2Dz2<1+2D+1
64 zleltp1 y2Dz21+2Dy2Dz21+2Dy2Dz2<1+2D+1
65 56 50 64 syl2anc yzDy2Dz2<1+2Dy2Dz21+2Dy2Dz2<1+2D+1
66 63 65 mpbird yzDy2Dz2<1+2Dy2Dz21+2D
67 absle y2Dz21+2Dy2Dz21+2D1+2Dy2Dz2y2Dz21+2D
68 67 biimpa y2Dz21+2Dy2Dz21+2D1+2Dy2Dz2y2Dz21+2D
69 52 53 66 68 syl21anc yzDy2Dz2<1+2D1+2Dy2Dz2y2Dz21+2D
70 elfz y2Dz21+2D1+2Dy2Dz21+2D1+2D1+2Dy2Dz2y2Dz21+2D
71 70 biimpar y2Dz21+2D1+2D1+2Dy2Dz2y2Dz21+2Dy2Dz21+2D1+2D
72 37 51 50 69 71 syl31anc yzDy2Dz2<1+2Dy2Dz21+2D1+2D
73 22 23 25 72 syl12anc Da=yzyzy2Dz20y2Dz2<1+2Dy2Dz21+2D1+2D
74 73 adantlr D¬Da=yzyzy2Dz20y2Dz2<1+2Dy2Dz21+2D1+2D
75 simprl yzy2Dz20y2Dz2<1+2Dy2Dz20
76 75 ad2antll D¬Da=yzyzy2Dz20y2Dz2<1+2Dy2Dz20
77 eldifsn y2Dz21+2D1+2D0y2Dz21+2D1+2Dy2Dz20
78 74 76 77 sylanbrc D¬Da=yzyzy2Dz20y2Dz2<1+2Dy2Dz21+2D1+2D0
79 21 78 eqeltrd D¬Da=yzyzy2Dz20y2Dz2<1+2D1sta2D2nda21+2D1+2D0
80 79 ex D¬Da=yzyzy2Dz20y2Dz2<1+2D1sta2D2nda21+2D1+2D0
81 80 exlimdvv D¬Dyza=yzyzy2Dz20y2Dz2<1+2D1sta2D2nda21+2D1+2D0
82 5 81 biimtrid D¬Dayz|yzy2Dz20y2Dz2<1+2D1sta2D2nda21+2D1+2D0
83 82 imp D¬Dayz|yzy2Dz20y2Dz2<1+2D1sta2D2nda21+2D1+2D0
84 1 4 83 fiphp3d D¬Dx1+2D1+2D0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=x
85 eldif x1+2D1+2D0x1+2D1+2D¬x0
86 elfzelz x1+2D1+2Dx
87 simp2 D¬Dx¬x0x
88 velsn x0x=0
89 88 biimpri x=0x0
90 89 necon3bi ¬x0x0
91 90 3ad2ant3 D¬Dx¬x0x0
92 87 91 jca D¬Dx¬x0xx0
93 92 3exp D¬Dx¬x0xx0
94 86 93 syl5 D¬Dx1+2D1+2D¬x0xx0
95 94 impd D¬Dx1+2D1+2D¬x0xx0
96 85 95 biimtrid D¬Dx1+2D1+2D0xx0
97 simp2l D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xx
98 simp2r D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xx0
99 nnex V
100 99 99 xpex ×V
101 opabssxp yz|yzy2Dz2=x×
102 ssdomg ×Vyz|yzy2Dz2=x×yz|yzy2Dz2=x×
103 100 101 102 mp2 yz|yzy2Dz2=x×
104 xpnnen ×
105 domentr yz|yzy2Dz2=x××yz|yzy2Dz2=x
106 103 104 105 mp2an yz|yzy2Dz2=x
107 ensym ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=x
108 107 3ad2ant3 D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=x
109 100 101 ssexi yz|yzy2Dz2=xV
110 fveq2 a=b1sta=1stb
111 110 oveq1d a=b1sta2=1stb2
112 fveq2 a=b2nda=2ndb
113 112 oveq1d a=b2nda2=2ndb2
114 113 oveq2d a=bD2nda2=D2ndb2
115 111 114 oveq12d a=b1sta2D2nda2=1stb2D2ndb2
116 115 eqeq1d a=b1sta2D2nda2=x1stb2D2ndb2=x
117 116 elrab bayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xbyz|yzy2Dz20y2Dz2<1+2D1stb2D2ndb2=x
118 simprl D¬Dxx01stb2D2ndb2=xb=yzyzy2Dz20y2Dz2<1+2Db=yz
119 simprrl D¬Dxx01stb2D2ndb2=xb=yzyzy2Dz20y2Dz2<1+2Dyz
120 fveq2 b=yz1stb=1styz
121 120 oveq1d b=yz1stb2=1styz2
122 fveq2 b=yz2ndb=2ndyz
123 122 oveq1d b=yz2ndb2=2ndyz2
124 123 oveq2d b=yzD2ndb2=D2ndyz2
125 121 124 oveq12d b=yz1stb2D2ndb2=1styz2D2ndyz2
126 125 19 eqtr2di b=yzy2Dz2=1stb2D2ndb2
127 126 ad2antrl D¬Dxx01stb2D2ndb2=xb=yzyzy2Dz20y2Dz2<1+2Dy2Dz2=1stb2D2ndb2
128 simplr D¬Dxx01stb2D2ndb2=xb=yzyzy2Dz20y2Dz2<1+2D1stb2D2ndb2=x
129 127 128 eqtrd D¬Dxx01stb2D2ndb2=xb=yzyzy2Dz20y2Dz2<1+2Dy2Dz2=x
130 118 119 129 jca32 D¬Dxx01stb2D2ndb2=xb=yzyzy2Dz20y2Dz2<1+2Db=yzyzy2Dz2=x
131 130 ex D¬Dxx01stb2D2ndb2=xb=yzyzy2Dz20y2Dz2<1+2Db=yzyzy2Dz2=x
132 131 2eximdv D¬Dxx01stb2D2ndb2=xyzb=yzyzy2Dz20y2Dz2<1+2Dyzb=yzyzy2Dz2=x
133 elopab byz|yzy2Dz20y2Dz2<1+2Dyzb=yzyzy2Dz20y2Dz2<1+2D
134 elopab byz|yzy2Dz2=xyzb=yzyzy2Dz2=x
135 132 133 134 3imtr4g D¬Dxx01stb2D2ndb2=xbyz|yzy2Dz20y2Dz2<1+2Dbyz|yzy2Dz2=x
136 135 expimpd D¬Dxx01stb2D2ndb2=xbyz|yzy2Dz20y2Dz2<1+2Dbyz|yzy2Dz2=x
137 136 ancomsd D¬Dxx0byz|yzy2Dz20y2Dz2<1+2D1stb2D2ndb2=xbyz|yzy2Dz2=x
138 117 137 biimtrid D¬Dxx0bayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xbyz|yzy2Dz2=x
139 138 ssrdv D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xyz|yzy2Dz2=x
140 139 3adant3 D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xyz|yzy2Dz2=x
141 ssdomg yz|yzy2Dz2=xVayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xyz|yzy2Dz2=xayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xyz|yzy2Dz2=x
142 109 140 141 mpsyl D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xyz|yzy2Dz2=x
143 endomtr ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xyz|yzy2Dz2=xyz|yzy2Dz2=x
144 108 142 143 syl2anc D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xyz|yzy2Dz2=x
145 sbth yz|yzy2Dz2=xyz|yzy2Dz2=xyz|yzy2Dz2=x
146 106 144 145 sylancr D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xyz|yzy2Dz2=x
147 97 98 146 jca32 D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xxx0yz|yzy2Dz2=x
148 147 3exp D¬Dxx0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xxx0yz|yzy2Dz2=x
149 96 148 syld D¬Dx1+2D1+2D0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xxx0yz|yzy2Dz2=x
150 149 impd D¬Dx1+2D1+2D0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xxx0yz|yzy2Dz2=x
151 150 reximdv2 D¬Dx1+2D1+2D0ayz|yzy2Dz20y2Dz2<1+2D|1sta2D2nda2=xxx0yz|yzy2Dz2=x
152 84 151 mpd D¬Dxx0yz|yzy2Dz2=x