| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pellexlem4 |
|
| 2 |
|
fzfi |
|
| 3 |
|
diffi |
|
| 4 |
2 3
|
mp1i |
|
| 5 |
|
elopab |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
oveq1d |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
oveq1d |
|
| 10 |
9
|
oveq2d |
|
| 11 |
7 10
|
oveq12d |
|
| 12 |
|
vex |
|
| 13 |
|
vex |
|
| 14 |
12 13
|
op1st |
|
| 15 |
14
|
oveq1i |
|
| 16 |
12 13
|
op2nd |
|
| 17 |
16
|
oveq1i |
|
| 18 |
17
|
oveq2i |
|
| 19 |
15 18
|
oveq12i |
|
| 20 |
11 19
|
eqtrdi |
|
| 21 |
20
|
ad2antrl |
|
| 22 |
|
simprrl |
|
| 23 |
|
simpl |
|
| 24 |
|
simprr |
|
| 25 |
24
|
ad2antll |
|
| 26 |
|
nnz |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
|
zsqcl |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
nnz |
|
| 31 |
30
|
ad2antrl |
|
| 32 |
|
simplr |
|
| 33 |
32
|
nnzd |
|
| 34 |
|
zsqcl |
|
| 35 |
33 34
|
syl |
|
| 36 |
31 35
|
zmulcld |
|
| 37 |
29 36
|
zsubcld |
|
| 38 |
|
1re |
|
| 39 |
|
2re |
|
| 40 |
|
nnre |
|
| 41 |
40
|
ad2antrl |
|
| 42 |
|
nnnn0 |
|
| 43 |
42
|
ad2antrl |
|
| 44 |
43
|
nn0ge0d |
|
| 45 |
41 44
|
resqrtcld |
|
| 46 |
|
remulcl |
|
| 47 |
39 45 46
|
sylancr |
|
| 48 |
|
readdcl |
|
| 49 |
38 47 48
|
sylancr |
|
| 50 |
49
|
flcld |
|
| 51 |
50
|
znegcld |
|
| 52 |
37
|
zred |
|
| 53 |
50
|
zred |
|
| 54 |
|
nn0abscl |
|
| 55 |
37 54
|
syl |
|
| 56 |
55
|
nn0zd |
|
| 57 |
56
|
zred |
|
| 58 |
|
peano2re |
|
| 59 |
53 58
|
syl |
|
| 60 |
|
simprr |
|
| 61 |
|
flltp1 |
|
| 62 |
49 61
|
syl |
|
| 63 |
57 49 59 60 62
|
lttrd |
|
| 64 |
|
zleltp1 |
|
| 65 |
56 50 64
|
syl2anc |
|
| 66 |
63 65
|
mpbird |
|
| 67 |
|
absle |
|
| 68 |
67
|
biimpa |
|
| 69 |
52 53 66 68
|
syl21anc |
|
| 70 |
|
elfz |
|
| 71 |
70
|
biimpar |
|
| 72 |
37 51 50 69 71
|
syl31anc |
|
| 73 |
22 23 25 72
|
syl12anc |
|
| 74 |
73
|
adantlr |
|
| 75 |
|
simprl |
|
| 76 |
75
|
ad2antll |
|
| 77 |
|
eldifsn |
|
| 78 |
74 76 77
|
sylanbrc |
|
| 79 |
21 78
|
eqeltrd |
|
| 80 |
79
|
ex |
|
| 81 |
80
|
exlimdvv |
|
| 82 |
5 81
|
biimtrid |
|
| 83 |
82
|
imp |
|
| 84 |
1 4 83
|
fiphp3d |
|
| 85 |
|
eldif |
|
| 86 |
|
elfzelz |
|
| 87 |
|
simp2 |
|
| 88 |
|
velsn |
|
| 89 |
88
|
biimpri |
|
| 90 |
89
|
necon3bi |
|
| 91 |
90
|
3ad2ant3 |
|
| 92 |
87 91
|
jca |
|
| 93 |
92
|
3exp |
|
| 94 |
86 93
|
syl5 |
|
| 95 |
94
|
impd |
|
| 96 |
85 95
|
biimtrid |
|
| 97 |
|
simp2l |
|
| 98 |
|
simp2r |
|
| 99 |
|
nnex |
|
| 100 |
99 99
|
xpex |
|
| 101 |
|
opabssxp |
|
| 102 |
|
ssdomg |
|
| 103 |
100 101 102
|
mp2 |
|
| 104 |
|
xpnnen |
|
| 105 |
|
domentr |
|
| 106 |
103 104 105
|
mp2an |
|
| 107 |
|
ensym |
|
| 108 |
107
|
3ad2ant3 |
|
| 109 |
100 101
|
ssexi |
|
| 110 |
|
fveq2 |
|
| 111 |
110
|
oveq1d |
|
| 112 |
|
fveq2 |
|
| 113 |
112
|
oveq1d |
|
| 114 |
113
|
oveq2d |
|
| 115 |
111 114
|
oveq12d |
|
| 116 |
115
|
eqeq1d |
|
| 117 |
116
|
elrab |
|
| 118 |
|
simprl |
|
| 119 |
|
simprrl |
|
| 120 |
|
fveq2 |
|
| 121 |
120
|
oveq1d |
|
| 122 |
|
fveq2 |
|
| 123 |
122
|
oveq1d |
|
| 124 |
123
|
oveq2d |
|
| 125 |
121 124
|
oveq12d |
|
| 126 |
125 19
|
eqtr2di |
|
| 127 |
126
|
ad2antrl |
|
| 128 |
|
simplr |
|
| 129 |
127 128
|
eqtrd |
|
| 130 |
118 119 129
|
jca32 |
|
| 131 |
130
|
ex |
|
| 132 |
131
|
2eximdv |
|
| 133 |
|
elopab |
|
| 134 |
|
elopab |
|
| 135 |
132 133 134
|
3imtr4g |
|
| 136 |
135
|
expimpd |
|
| 137 |
136
|
ancomsd |
|
| 138 |
117 137
|
biimtrid |
|
| 139 |
138
|
ssrdv |
|
| 140 |
139
|
3adant3 |
|
| 141 |
|
ssdomg |
|
| 142 |
109 140 141
|
mpsyl |
|
| 143 |
|
endomtr |
|
| 144 |
108 142 143
|
syl2anc |
|
| 145 |
|
sbth |
|
| 146 |
106 144 145
|
sylancr |
|
| 147 |
97 98 146
|
jca32 |
|
| 148 |
147
|
3exp |
|
| 149 |
96 148
|
syld |
|
| 150 |
149
|
impd |
|
| 151 |
150
|
reximdv2 |
|
| 152 |
84 151
|
mpd |
|