| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyco.1 |
|
| 2 |
|
plyco.2 |
|
| 3 |
|
plyco.3 |
|
| 4 |
|
plyco.4 |
|
| 5 |
|
plyf |
|
| 6 |
2 5
|
syl |
|
| 7 |
6
|
ffvelcdmda |
|
| 8 |
6
|
feqmptd |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
coeid |
|
| 12 |
1 11
|
syl |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
14
|
sumeq2sdv |
|
| 16 |
7 8 12 15
|
fmptco |
|
| 17 |
|
dgrcl |
|
| 18 |
1 17
|
syl |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
sumeq1d |
|
| 21 |
20
|
mpteq2dv |
|
| 22 |
21
|
eleq1d |
|
| 23 |
22
|
imbi2d |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
sumeq1d |
|
| 26 |
25
|
mpteq2dv |
|
| 27 |
26
|
eleq1d |
|
| 28 |
27
|
imbi2d |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
sumeq1d |
|
| 31 |
30
|
mpteq2dv |
|
| 32 |
31
|
eleq1d |
|
| 33 |
32
|
imbi2d |
|
| 34 |
|
oveq2 |
|
| 35 |
34
|
sumeq1d |
|
| 36 |
35
|
mpteq2dv |
|
| 37 |
36
|
eleq1d |
|
| 38 |
37
|
imbi2d |
|
| 39 |
|
0z |
|
| 40 |
7
|
exp0d |
|
| 41 |
40
|
oveq2d |
|
| 42 |
|
plybss |
|
| 43 |
1 42
|
syl |
|
| 44 |
|
0cnd |
|
| 45 |
44
|
snssd |
|
| 46 |
43 45
|
unssd |
|
| 47 |
9
|
coef |
|
| 48 |
1 47
|
syl |
|
| 49 |
|
0nn0 |
|
| 50 |
|
ffvelcdm |
|
| 51 |
48 49 50
|
sylancl |
|
| 52 |
46 51
|
sseldd |
|
| 53 |
52
|
adantr |
|
| 54 |
53
|
mulridd |
|
| 55 |
41 54
|
eqtrd |
|
| 56 |
55 53
|
eqeltrd |
|
| 57 |
|
fveq2 |
|
| 58 |
|
oveq2 |
|
| 59 |
57 58
|
oveq12d |
|
| 60 |
59
|
fsum1 |
|
| 61 |
39 56 60
|
sylancr |
|
| 62 |
61 55
|
eqtrd |
|
| 63 |
62
|
mpteq2dva |
|
| 64 |
|
fconstmpt |
|
| 65 |
63 64
|
eqtr4di |
|
| 66 |
|
plyconst |
|
| 67 |
46 51 66
|
syl2anc |
|
| 68 |
|
plyun0 |
|
| 69 |
67 68
|
eleqtrdi |
|
| 70 |
65 69
|
eqeltrd |
|
| 71 |
|
simprr |
|
| 72 |
46
|
adantr |
|
| 73 |
|
peano2nn0 |
|
| 74 |
|
ffvelcdm |
|
| 75 |
48 73 74
|
syl2an |
|
| 76 |
|
plyconst |
|
| 77 |
72 75 76
|
syl2anc |
|
| 78 |
77 68
|
eleqtrdi |
|
| 79 |
|
nn0p1nn |
|
| 80 |
|
oveq2 |
|
| 81 |
80
|
mpteq2dv |
|
| 82 |
81
|
eleq1d |
|
| 83 |
82
|
imbi2d |
|
| 84 |
|
oveq2 |
|
| 85 |
84
|
mpteq2dv |
|
| 86 |
85
|
eleq1d |
|
| 87 |
86
|
imbi2d |
|
| 88 |
|
oveq2 |
|
| 89 |
88
|
mpteq2dv |
|
| 90 |
89
|
eleq1d |
|
| 91 |
90
|
imbi2d |
|
| 92 |
7
|
exp1d |
|
| 93 |
92
|
mpteq2dva |
|
| 94 |
93 8
|
eqtr4d |
|
| 95 |
94 2
|
eqeltrd |
|
| 96 |
|
simprr |
|
| 97 |
2
|
adantr |
|
| 98 |
3
|
adantlr |
|
| 99 |
4
|
adantlr |
|
| 100 |
96 97 98 99
|
plymul |
|
| 101 |
100
|
expr |
|
| 102 |
|
cnex |
|
| 103 |
102
|
a1i |
|
| 104 |
|
ovexd |
|
| 105 |
7
|
adantlr |
|
| 106 |
|
eqidd |
|
| 107 |
8
|
adantr |
|
| 108 |
103 104 105 106 107
|
offval2 |
|
| 109 |
|
nnnn0 |
|
| 110 |
109
|
ad2antlr |
|
| 111 |
105 110
|
expp1d |
|
| 112 |
111
|
mpteq2dva |
|
| 113 |
108 112
|
eqtr4d |
|
| 114 |
113
|
eleq1d |
|
| 115 |
101 114
|
sylibd |
|
| 116 |
115
|
expcom |
|
| 117 |
116
|
a2d |
|
| 118 |
83 87 91 91 95 117
|
nnind |
|
| 119 |
79 118
|
syl |
|
| 120 |
119
|
impcom |
|
| 121 |
3
|
adantlr |
|
| 122 |
4
|
adantlr |
|
| 123 |
78 120 121 122
|
plymul |
|
| 124 |
123
|
adantrr |
|
| 125 |
3
|
adantlr |
|
| 126 |
71 124 125
|
plyadd |
|
| 127 |
126
|
expr |
|
| 128 |
102
|
a1i |
|
| 129 |
|
sumex |
|
| 130 |
129
|
a1i |
|
| 131 |
|
ovexd |
|
| 132 |
|
eqidd |
|
| 133 |
|
fvexd |
|
| 134 |
|
ovexd |
|
| 135 |
|
fconstmpt |
|
| 136 |
135
|
a1i |
|
| 137 |
|
eqidd |
|
| 138 |
128 133 134 136 137
|
offval2 |
|
| 139 |
128 130 131 132 138
|
offval2 |
|
| 140 |
|
simplr |
|
| 141 |
|
nn0uz |
|
| 142 |
140 141
|
eleqtrdi |
|
| 143 |
9
|
coef3 |
|
| 144 |
1 143
|
syl |
|
| 145 |
144
|
ad2antrr |
|
| 146 |
|
elfznn0 |
|
| 147 |
|
ffvelcdm |
|
| 148 |
145 146 147
|
syl2an |
|
| 149 |
7
|
adantlr |
|
| 150 |
|
expcl |
|
| 151 |
149 146 150
|
syl2an |
|
| 152 |
148 151
|
mulcld |
|
| 153 |
|
fveq2 |
|
| 154 |
|
oveq2 |
|
| 155 |
153 154
|
oveq12d |
|
| 156 |
142 152 155
|
fsump1 |
|
| 157 |
156
|
mpteq2dva |
|
| 158 |
139 157
|
eqtr4d |
|
| 159 |
158
|
eleq1d |
|
| 160 |
127 159
|
sylibd |
|
| 161 |
160
|
expcom |
|
| 162 |
161
|
a2d |
|
| 163 |
23 28 33 38 70 162
|
nn0ind |
|
| 164 |
18 163
|
mpcom |
|
| 165 |
16 164
|
eqeltrd |
|