Metamath Proof Explorer


Theorem plyrem

Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout ). If a polynomial F is divided by the linear factor x - A , the remainder is equal to F ( A ) , the evaluation of the polynomial at A (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plyrem.1 G=Xpf×A
plyrem.2 R=FfG×fFquotG
Assertion plyrem FPolySAR=×FA

Proof

Step Hyp Ref Expression
1 plyrem.1 G=Xpf×A
2 plyrem.2 R=FfG×fFquotG
3 plyssc PolySPoly
4 simpl FPolySAFPolyS
5 3 4 sselid FPolySAFPoly
6 1 plyremlem AGPolydegG=1G-10=A
7 6 adantl FPolySAGPolydegG=1G-10=A
8 7 simp1d FPolySAGPoly
9 7 simp2d FPolySAdegG=1
10 ax-1ne0 10
11 10 a1i FPolySA10
12 9 11 eqnetrd FPolySAdegG0
13 fveq2 G=0𝑝degG=deg0𝑝
14 dgr0 deg0𝑝=0
15 13 14 eqtrdi G=0𝑝degG=0
16 15 necon3i degG0G0𝑝
17 12 16 syl FPolySAG0𝑝
18 2 quotdgr FPolyGPolyG0𝑝R=0𝑝degR<degG
19 5 8 17 18 syl3anc FPolySAR=0𝑝degR<degG
20 0lt1 0<1
21 20 9 breqtrrid FPolySA0<degG
22 fveq2 R=0𝑝degR=deg0𝑝
23 22 14 eqtrdi R=0𝑝degR=0
24 23 breq1d R=0𝑝degR<degG0<degG
25 21 24 syl5ibrcom FPolySAR=0𝑝degR<degG
26 pm2.62 R=0𝑝degR<degGR=0𝑝degR<degGdegR<degG
27 19 25 26 sylc FPolySAdegR<degG
28 27 9 breqtrd FPolySAdegR<1
29 quotcl2 FPolyGPolyG0𝑝FquotGPoly
30 5 8 17 29 syl3anc FPolySAFquotGPoly
31 plymulcl GPolyFquotGPolyG×fFquotGPoly
32 8 30 31 syl2anc FPolySAG×fFquotGPoly
33 plysubcl FPolyG×fFquotGPolyFfG×fFquotGPoly
34 5 32 33 syl2anc FPolySAFfG×fFquotGPoly
35 2 34 eqeltrid FPolySARPoly
36 dgrcl RPolydegR0
37 35 36 syl FPolySAdegR0
38 nn0lt10b degR0degR<1degR=0
39 37 38 syl FPolySAdegR<1degR=0
40 28 39 mpbid FPolySAdegR=0
41 0dgrb RPolydegR=0R=×R0
42 35 41 syl FPolySAdegR=0R=×R0
43 40 42 mpbid FPolySAR=×R0
44 43 fveq1d FPolySARA=×R0A
45 2 fveq1i RA=FfG×fFquotGA
46 plyf FPolySF:
47 46 adantr FPolySAF:
48 47 ffnd FPolySAFFn
49 plyf GPolyG:
50 8 49 syl FPolySAG:
51 50 ffnd FPolySAGFn
52 plyf FquotGPolyFquotG:
53 30 52 syl FPolySAFquotG:
54 53 ffnd FPolySAFquotGFn
55 cnex V
56 55 a1i FPolySAV
57 inidm =
58 51 54 56 56 57 offn FPolySAG×fFquotGFn
59 eqidd FPolySAAFA=FA
60 7 simp3d FPolySAG-10=A
61 ssun1 G-10G-10FquotG-10
62 60 61 eqsstrrdi FPolySAAG-10FquotG-10
63 snssg AAG-10FquotG-10AG-10FquotG-10
64 63 adantl FPolySAAG-10FquotG-10AG-10FquotG-10
65 62 64 mpbird FPolySAAG-10FquotG-10
66 ofmulrt VG:FquotG:G×fFquotG-10=G-10FquotG-10
67 56 50 53 66 syl3anc FPolySAG×fFquotG-10=G-10FquotG-10
68 65 67 eleqtrrd FPolySAAG×fFquotG-10
69 fniniseg G×fFquotGFnAG×fFquotG-10AG×fFquotGA=0
70 58 69 syl FPolySAAG×fFquotG-10AG×fFquotGA=0
71 68 70 mpbid FPolySAAG×fFquotGA=0
72 71 simprd FPolySAG×fFquotGA=0
73 72 adantr FPolySAAG×fFquotGA=0
74 48 58 56 56 57 59 73 ofval FPolySAAFfG×fFquotGA=FA0
75 74 anabss3 FPolySAFfG×fFquotGA=FA0
76 45 75 eqtrid FPolySARA=FA0
77 46 ffvelcdmda FPolySAFA
78 77 subid1d FPolySAFA0=FA
79 76 78 eqtrd FPolySARA=FA
80 fvex R0V
81 80 fvconst2 A×R0A=R0
82 81 adantl FPolySA×R0A=R0
83 44 79 82 3eqtr3d FPolySAFA=R0
84 83 sneqd FPolySAFA=R0
85 84 xpeq2d FPolySA×FA=×R0
86 43 85 eqtr4d FPolySAR=×FA