Metamath Proof Explorer


Theorem pmatcollpw2lem

Description: Lemma for pmatcollpw2 . (Contributed by AV, 3-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P=Poly1R
pmatcollpw1.c C=NMatP
pmatcollpw1.b B=BaseC
pmatcollpw1.m ×˙=P
pmatcollpw1.e ×˙=mulGrpP
pmatcollpw1.x X=var1R
Assertion pmatcollpw2lem NFinRRingMBfinSupp0Cn0iN,jNiMdecompPMatnj×˙n×˙X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P=Poly1R
2 pmatcollpw1.c C=NMatP
3 pmatcollpw1.b B=BaseC
4 pmatcollpw1.m ×˙=P
5 pmatcollpw1.e ×˙=mulGrpP
6 pmatcollpw1.x X=var1R
7 simp1 NFinRRingMBNFin
8 mpoexga NFinNFiniN,jNiMdecompPMatnj×˙n×˙XV
9 7 7 8 syl2anc NFinRRingMBiN,jNiMdecompPMatnj×˙n×˙XV
10 9 ralrimivw NFinRRingMBn0iN,jNiMdecompPMatnj×˙n×˙XV
11 eqid n0iN,jNiMdecompPMatnj×˙n×˙X=n0iN,jNiMdecompPMatnj×˙n×˙X
12 11 fnmpt n0iN,jNiMdecompPMatnj×˙n×˙XVn0iN,jNiMdecompPMatnj×˙n×˙XFn0
13 10 12 syl NFinRRingMBn0iN,jNiMdecompPMatnj×˙n×˙XFn0
14 nn0ex 0V
15 14 a1i NFinRRingMB0V
16 fvexd NFinRRingMB0CV
17 suppvalfn n0iN,jNiMdecompPMatnj×˙n×˙XFn00V0CVn0iN,jNiMdecompPMatnj×˙n×˙Xsupp0C=x0|n0iN,jNiMdecompPMatnj×˙n×˙Xx0C
18 13 15 16 17 syl3anc NFinRRingMBn0iN,jNiMdecompPMatnj×˙n×˙Xsupp0C=x0|n0iN,jNiMdecompPMatnj×˙n×˙Xx0C
19 eqid 0R=0R
20 1 2 3 19 pmatcoe1fsupp NFinRRingMBy0x0y<xiNjNcoe1iMjx=0R
21 oveq1 coe1iMjx=0Rcoe1iMjx×˙x×˙X=0R×˙x×˙X
22 4 a1i NFinRRingMB×˙=P
23 1 ply1sca RRingR=ScalarP
24 23 3ad2ant2 NFinRRingMBR=ScalarP
25 24 fveq2d NFinRRingMB0R=0ScalarP
26 eqidd NFinRRingMBx×˙X=x×˙X
27 22 25 26 oveq123d NFinRRingMB0R×˙x×˙X=0ScalarPPx×˙X
28 27 ad3antrrr NFinRRingMBx0iNjN0R×˙x×˙X=0ScalarPPx×˙X
29 24 eqcomd NFinRRingMBScalarP=R
30 29 ad3antrrr NFinRRingMBx0iNjNScalarP=R
31 30 fveq2d NFinRRingMBx0iNjN0ScalarP=0R
32 31 oveq1d NFinRRingMBx0iNjN0ScalarPPx×˙X=0RPx×˙X
33 simpl2 NFinRRingMBx0RRing
34 eqid mulGrpP=mulGrpP
35 eqid BaseP=BaseP
36 1 6 34 5 35 ply1moncl RRingx0x×˙XBaseP
37 36 3ad2antl2 NFinRRingMBx0x×˙XBaseP
38 33 37 jca NFinRRingMBx0RRingx×˙XBaseP
39 38 adantr NFinRRingMBx0iNRRingx×˙XBaseP
40 39 adantr NFinRRingMBx0iNjNRRingx×˙XBaseP
41 eqid P=P
42 1 35 41 19 ply10s0 RRingx×˙XBaseP0RPx×˙X=0P
43 40 42 syl NFinRRingMBx0iNjN0RPx×˙X=0P
44 28 32 43 3eqtrd NFinRRingMBx0iNjN0R×˙x×˙X=0P
45 21 44 sylan9eqr NFinRRingMBx0iNjNcoe1iMjx=0Rcoe1iMjx×˙x×˙X=0P
46 45 ex NFinRRingMBx0iNjNcoe1iMjx=0Rcoe1iMjx×˙x×˙X=0P
47 46 anasss NFinRRingMBx0iNjNcoe1iMjx=0Rcoe1iMjx×˙x×˙X=0P
48 47 ralimdvva NFinRRingMBx0iNjNcoe1iMjx=0RiNjNcoe1iMjx×˙x×˙X=0P
49 48 imim2d NFinRRingMBx0y<xiNjNcoe1iMjx=0Ry<xiNjNcoe1iMjx×˙x×˙X=0P
50 49 ralimdva NFinRRingMBx0y<xiNjNcoe1iMjx=0Rx0y<xiNjNcoe1iMjx×˙x×˙X=0P
51 50 reximdv NFinRRingMBy0x0y<xiNjNcoe1iMjx=0Ry0x0y<xiNjNcoe1iMjx×˙x×˙X=0P
52 20 51 mpd NFinRRingMBy0x0y<xiNjNcoe1iMjx×˙x×˙X=0P
53 simpl3 NFinRRingMBx0MB
54 simpr NFinRRingMBx0x0
55 33 53 54 3jca NFinRRingMBx0RRingMBx0
56 1 2 3 decpmate RRingMBx0iNjNiMdecompPMatxj=coe1iMjx
57 55 56 sylan NFinRRingMBx0iNjNiMdecompPMatxj=coe1iMjx
58 57 oveq1d NFinRRingMBx0iNjNiMdecompPMatxj×˙x×˙X=coe1iMjx×˙x×˙X
59 58 eqeq1d NFinRRingMBx0iNjNiMdecompPMatxj×˙x×˙X=0Pcoe1iMjx×˙x×˙X=0P
60 59 2ralbidva NFinRRingMBx0iNjNiMdecompPMatxj×˙x×˙X=0PiNjNcoe1iMjx×˙x×˙X=0P
61 60 imbi2d NFinRRingMBx0y<xiNjNiMdecompPMatxj×˙x×˙X=0Py<xiNjNcoe1iMjx×˙x×˙X=0P
62 61 ralbidva NFinRRingMBx0y<xiNjNiMdecompPMatxj×˙x×˙X=0Px0y<xiNjNcoe1iMjx×˙x×˙X=0P
63 62 rexbidv NFinRRingMBy0x0y<xiNjNiMdecompPMatxj×˙x×˙X=0Py0x0y<xiNjNcoe1iMjx×˙x×˙X=0P
64 52 63 mpbird NFinRRingMBy0x0y<xiNjNiMdecompPMatxj×˙x×˙X=0P
65 eqid N=N
66 65 biantrur iNN=NjNiMdecompPMatxj×˙x×˙X=0PN=NiNN=NjNiMdecompPMatxj×˙x×˙X=0P
67 65 biantrur jNiMdecompPMatxj×˙x×˙X=0PN=NjNiMdecompPMatxj×˙x×˙X=0P
68 67 bicomi N=NjNiMdecompPMatxj×˙x×˙X=0PjNiMdecompPMatxj×˙x×˙X=0P
69 68 ralbii iNN=NjNiMdecompPMatxj×˙x×˙X=0PiNjNiMdecompPMatxj×˙x×˙X=0P
70 66 69 bitr3i N=NiNN=NjNiMdecompPMatxj×˙x×˙X=0PiNjNiMdecompPMatxj×˙x×˙X=0P
71 70 a1i NFinRRingMBN=NiNN=NjNiMdecompPMatxj×˙x×˙X=0PiNjNiMdecompPMatxj×˙x×˙X=0P
72 71 imbi2d NFinRRingMBy<xN=NiNN=NjNiMdecompPMatxj×˙x×˙X=0Py<xiNjNiMdecompPMatxj×˙x×˙X=0P
73 72 rexralbidv NFinRRingMBy0x0y<xN=NiNN=NjNiMdecompPMatxj×˙x×˙X=0Py0x0y<xiNjNiMdecompPMatxj×˙x×˙X=0P
74 64 73 mpbird NFinRRingMBy0x0y<xN=NiNN=NjNiMdecompPMatxj×˙x×˙X=0P
75 mpoeq123 N=NiNN=NjNiMdecompPMatxj×˙x×˙X=0PiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
76 75 imim2i y<xN=NiNN=NjNiMdecompPMatxj×˙x×˙X=0Py<xiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
77 76 ralimi x0y<xN=NiNN=NjNiMdecompPMatxj×˙x×˙X=0Px0y<xiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
78 77 reximi y0x0y<xN=NiNN=NjNiMdecompPMatxj×˙x×˙X=0Py0x0y<xiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
79 74 78 syl NFinRRingMBy0x0y<xiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
80 eqidd NFinRRingMBx0n0iN,jNiMdecompPMatnj×˙n×˙X=n0iN,jNiMdecompPMatnj×˙n×˙X
81 oveq2 n=xMdecompPMatn=MdecompPMatx
82 81 oveqd n=xiMdecompPMatnj=iMdecompPMatxj
83 oveq1 n=xn×˙X=x×˙X
84 82 83 oveq12d n=xiMdecompPMatnj×˙n×˙X=iMdecompPMatxj×˙x×˙X
85 84 mpoeq3dv n=xiN,jNiMdecompPMatnj×˙n×˙X=iN,jNiMdecompPMatxj×˙x×˙X
86 85 adantl NFinRRingMBx0n=xiN,jNiMdecompPMatnj×˙n×˙X=iN,jNiMdecompPMatxj×˙x×˙X
87 id NFinNFin
88 87 ancri NFinNFinNFin
89 88 3ad2ant1 NFinRRingMBNFinNFin
90 89 adantr NFinRRingMBx0NFinNFin
91 mpoexga NFinNFiniN,jNiMdecompPMatxj×˙x×˙XV
92 90 91 syl NFinRRingMBx0iN,jNiMdecompPMatxj×˙x×˙XV
93 80 86 54 92 fvmptd NFinRRingMBx0n0iN,jNiMdecompPMatnj×˙n×˙Xx=iN,jNiMdecompPMatxj×˙x×˙X
94 1 ply1ring RRingPRing
95 94 anim2i NFinRRingNFinPRing
96 95 3adant3 NFinRRingMBNFinPRing
97 96 adantr NFinRRingMBx0NFinPRing
98 eqid 0P=0P
99 2 98 mat0op NFinPRing0C=iN,jN0P
100 97 99 syl NFinRRingMBx00C=iN,jN0P
101 93 100 eqeq12d NFinRRingMBx0n0iN,jNiMdecompPMatnj×˙n×˙Xx=0CiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
102 101 imbi2d NFinRRingMBx0y<xn0iN,jNiMdecompPMatnj×˙n×˙Xx=0Cy<xiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
103 102 ralbidva NFinRRingMBx0y<xn0iN,jNiMdecompPMatnj×˙n×˙Xx=0Cx0y<xiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
104 103 rexbidv NFinRRingMBy0x0y<xn0iN,jNiMdecompPMatnj×˙n×˙Xx=0Cy0x0y<xiN,jNiMdecompPMatxj×˙x×˙X=iN,jN0P
105 79 104 mpbird NFinRRingMBy0x0y<xn0iN,jNiMdecompPMatnj×˙n×˙Xx=0C
106 nne ¬n0iN,jNiMdecompPMatnj×˙n×˙Xx0Cn0iN,jNiMdecompPMatnj×˙n×˙Xx=0C
107 106 imbi2i y<x¬n0iN,jNiMdecompPMatnj×˙n×˙Xx0Cy<xn0iN,jNiMdecompPMatnj×˙n×˙Xx=0C
108 107 ralbii x0y<x¬n0iN,jNiMdecompPMatnj×˙n×˙Xx0Cx0y<xn0iN,jNiMdecompPMatnj×˙n×˙Xx=0C
109 108 rexbii y0x0y<x¬n0iN,jNiMdecompPMatnj×˙n×˙Xx0Cy0x0y<xn0iN,jNiMdecompPMatnj×˙n×˙Xx=0C
110 105 109 sylibr NFinRRingMBy0x0y<x¬n0iN,jNiMdecompPMatnj×˙n×˙Xx0C
111 rabssnn0fi x0|n0iN,jNiMdecompPMatnj×˙n×˙Xx0CFiny0x0y<x¬n0iN,jNiMdecompPMatnj×˙n×˙Xx0C
112 110 111 sylibr NFinRRingMBx0|n0iN,jNiMdecompPMatnj×˙n×˙Xx0CFin
113 18 112 eqeltrd NFinRRingMBn0iN,jNiMdecompPMatnj×˙n×˙Xsupp0CFin
114 funmpt Funn0iN,jNiMdecompPMatnj×˙n×˙X
115 14 mptex n0iN,jNiMdecompPMatnj×˙n×˙XV
116 funisfsupp Funn0iN,jNiMdecompPMatnj×˙n×˙Xn0iN,jNiMdecompPMatnj×˙n×˙XV0CVfinSupp0Cn0iN,jNiMdecompPMatnj×˙n×˙Xn0iN,jNiMdecompPMatnj×˙n×˙Xsupp0CFin
117 114 115 16 116 mp3an12i NFinRRingMBfinSupp0Cn0iN,jNiMdecompPMatnj×˙n×˙Xn0iN,jNiMdecompPMatnj×˙n×˙Xsupp0CFin
118 113 117 mpbird NFinRRingMBfinSupp0Cn0iN,jNiMdecompPMatnj×˙n×˙X