Metamath Proof Explorer


Theorem pwfseqlem5

Description: Lemma for pwfseq . Although in some ways pwfseqlem4 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection K from the set of finite sequences on an infinite set x to x . Now this alone would not be difficult to prove; this is mostly the claim of fseqen . However, what is needed for the proof is acanonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen . The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms ( cnfcom3c ), which can be used to construct a pairing function explicitly using properties of the ordinal exponential ( infxpenc ). (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem5.g φG:𝒫A1-1nωAn
pwfseqlem5.x φXA
pwfseqlem5.h φH:ω1-1 ontoX
pwfseqlem5.ps ψtArt×trWetωt
pwfseqlem5.n φbhar𝒫AωbNb:b×b1-1 ontob
pwfseqlem5.o O=OrdIsort
pwfseqlem5.t T=udomO,vdomOOuOv
pwfseqlem5.p P=ONdomOT-1
pwfseqlem5.s S=seqωkV,fVxtsuckfxkPxkO
pwfseqlem5.q Q=ynωtndomySdomyy
pwfseqlem5.i I=xω,ytOxy
pwfseqlem5.k K=PIQ
Assertion pwfseqlem5 ¬φ

Proof

Step Hyp Ref Expression
1 pwfseqlem5.g φG:𝒫A1-1nωAn
2 pwfseqlem5.x φXA
3 pwfseqlem5.h φH:ω1-1 ontoX
4 pwfseqlem5.ps ψtArt×trWetωt
5 pwfseqlem5.n φbhar𝒫AωbNb:b×b1-1 ontob
6 pwfseqlem5.o O=OrdIsort
7 pwfseqlem5.t T=udomO,vdomOOuOv
8 pwfseqlem5.p P=ONdomOT-1
9 pwfseqlem5.s S=seqωkV,fVxtsuckfxkPxkO
10 pwfseqlem5.q Q=ynωtndomySdomyy
11 pwfseqlem5.i I=xω,ytOxy
12 pwfseqlem5.k K=PIQ
13 vex tV
14 simprl3 φtArt×trWetωtrWet
15 4 14 sylan2b φψrWet
16 6 oiiso tVrWetOIsomE,rdomOt
17 13 15 16 sylancr φψOIsomE,rdomOt
18 isof1o OIsomE,rdomOtO:domO1-1 ontot
19 17 18 syl φψO:domO1-1 ontot
20 cardom cardω=ω
21 simprr φtArt×trWetωtωt
22 4 21 sylan2b φψωt
23 6 oien tVrWetdomOt
24 13 15 23 sylancr φψdomOt
25 24 ensymd φψtdomO
26 domentr ωttdomOωdomO
27 22 25 26 syl2anc φψωdomO
28 omelon ωOn
29 onenon ωOnωdomcard
30 28 29 ax-mp ωdomcard
31 6 oion tVdomOOn
32 31 elv domOOn
33 onenon domOOndomOdomcard
34 32 33 mp1i φψdomOdomcard
35 carddom2 ωdomcarddomOdomcardcardωcarddomOωdomO
36 30 34 35 sylancr φψcardωcarddomOωdomO
37 27 36 mpbird φψcardωcarddomO
38 20 37 eqsstrrid φψωcarddomO
39 cardonle domOOncarddomOdomO
40 32 39 mp1i φψcarddomOdomO
41 38 40 sstrd φψωdomO
42 sseq2 b=domOωbωdomO
43 fveq2 b=domONb=NdomO
44 43 f1oeq1d b=domONb:b×b1-1 ontobNdomO:b×b1-1 ontob
45 xpeq12 b=domOb=domOb×b=domO×domO
46 45 anidms b=domOb×b=domO×domO
47 46 f1oeq2d b=domONdomO:b×b1-1 ontobNdomO:domO×domO1-1 ontob
48 f1oeq3 b=domONdomO:domO×domO1-1 ontobNdomO:domO×domO1-1 ontodomO
49 44 47 48 3bitrd b=domONb:b×b1-1 ontobNdomO:domO×domO1-1 ontodomO
50 42 49 imbi12d b=domOωbNb:b×b1-1 ontobωdomONdomO:domO×domO1-1 ontodomO
51 5 adantr φψbhar𝒫AωbNb:b×b1-1 ontob
52 32 a1i φψdomOOn
53 1 adantr φψG:𝒫A1-1nωAn
54 omex ωV
55 ovex AnV
56 54 55 iunex nωAnV
57 f1dmex G:𝒫A1-1nωAnnωAnV𝒫AV
58 53 56 57 sylancl φψ𝒫AV
59 pwexb AV𝒫AV
60 58 59 sylibr φψAV
61 simprl1 φtArt×trWetωttA
62 4 61 sylan2b φψtA
63 ssdomg AVtAtA
64 60 62 63 sylc φψtA
65 canth2g AVA𝒫A
66 sdomdom A𝒫AA𝒫A
67 60 65 66 3syl φψA𝒫A
68 domtr tAA𝒫At𝒫A
69 64 67 68 syl2anc φψt𝒫A
70 endomtr domOtt𝒫AdomO𝒫A
71 24 69 70 syl2anc φψdomO𝒫A
72 elharval domOhar𝒫AdomOOndomO𝒫A
73 52 71 72 sylanbrc φψdomOhar𝒫A
74 50 51 73 rspcdva φψωdomONdomO:domO×domO1-1 ontodomO
75 41 74 mpd φψNdomO:domO×domO1-1 ontodomO
76 f1oco O:domO1-1 ontotNdomO:domO×domO1-1 ontodomOONdomO:domO×domO1-1 ontot
77 19 75 76 syl2anc φψONdomO:domO×domO1-1 ontot
78 f1of O:domO1-1 ontotO:domOt
79 19 78 syl φψO:domOt
80 79 feqmptd φψO=udomOOu
81 80 f1oeq1d φψO:domO1-1 ontotudomOOu:domO1-1 ontot
82 19 81 mpbid φψudomOOu:domO1-1 ontot
83 79 feqmptd φψO=vdomOOv
84 83 f1oeq1d φψO:domO1-1 ontotvdomOOv:domO1-1 ontot
85 19 84 mpbid φψvdomOOv:domO1-1 ontot
86 82 85 xpf1o φψudomO,vdomOOuOv:domO×domO1-1 ontot×t
87 f1oeq1 T=udomO,vdomOOuOvT:domO×domO1-1 ontot×tudomO,vdomOOuOv:domO×domO1-1 ontot×t
88 7 87 ax-mp T:domO×domO1-1 ontot×tudomO,vdomOOuOv:domO×domO1-1 ontot×t
89 86 88 sylibr φψT:domO×domO1-1 ontot×t
90 f1ocnv T:domO×domO1-1 ontot×tT-1:t×t1-1 ontodomO×domO
91 89 90 syl φψT-1:t×t1-1 ontodomO×domO
92 f1oco ONdomO:domO×domO1-1 ontotT-1:t×t1-1 ontodomO×domOONdomOT-1:t×t1-1 ontot
93 77 91 92 syl2anc φψONdomOT-1:t×t1-1 ontot
94 f1oeq1 P=ONdomOT-1P:t×t1-1 ontotONdomOT-1:t×t1-1 ontot
95 8 94 ax-mp P:t×t1-1 ontotONdomOT-1:t×t1-1 ontot
96 93 95 sylibr φψP:t×t1-1 ontot
97 f1of1 P:t×t1-1 ontotP:t×t1-1t
98 96 97 syl φψP:t×t1-1t
99 f1of1 O:domO1-1 ontotO:domO1-1t
100 19 99 syl φψO:domO1-1t
101 f1ssres O:domO1-1tωdomOOω:ω1-1t
102 100 41 101 syl2anc φψOω:ω1-1t
103 f1f1orn Oω:ω1-1tOω:ω1-1 ontoranOω
104 102 103 syl φψOω:ω1-1 ontoranOω
105 79 41 feqresmpt φψOω=xωOx
106 105 f1oeq1d φψOω:ω1-1 ontoranOωxωOx:ω1-1 ontoranOω
107 104 106 mpbid φψxωOx:ω1-1 ontoranOω
108 mptresid It=yty
109 108 eqcomi yty=It
110 f1oi It:t1-1 ontot
111 f1oeq1 yty=Ityty:t1-1 ontotIt:t1-1 ontot
112 110 111 mpbiri yty=Ityty:t1-1 ontot
113 109 112 mp1i φψyty:t1-1 ontot
114 107 113 xpf1o φψxω,ytOxy:ω×t1-1 ontoranOω×t
115 f1oeq1 I=xω,ytOxyI:ω×t1-1 ontoranOω×txω,ytOxy:ω×t1-1 ontoranOω×t
116 11 115 ax-mp I:ω×t1-1 ontoranOω×txω,ytOxy:ω×t1-1 ontoranOω×t
117 114 116 sylibr φψI:ω×t1-1 ontoranOω×t
118 f1of1 I:ω×t1-1 ontoranOω×tI:ω×t1-1ranOω×t
119 117 118 syl φψI:ω×t1-1ranOω×t
120 f1f Oω:ω1-1tOω:ωt
121 frn Oω:ωtranOωt
122 xpss1 ranOωtranOω×tt×t
123 102 120 121 122 4syl φψranOω×tt×t
124 f1ss I:ω×t1-1ranOω×tranOω×tt×tI:ω×t1-1t×t
125 119 123 124 syl2anc φψI:ω×t1-1t×t
126 f1co P:t×t1-1tI:ω×t1-1t×tPI:ω×t1-1t
127 98 125 126 syl2anc φψPI:ω×t1-1t
128 13 a1i φψtV
129 peano1 ω
130 129 a1i φψω
131 41 130 sseldd φψdomO
132 79 131 ffvelcdmd φψOt
133 128 132 96 9 10 fseqenlem2 φψQ:nωtn1-1ω×t
134 f1co PI:ω×t1-1tQ:nωtn1-1ω×tPIQ:nωtn1-1t
135 127 133 134 syl2anc φψPIQ:nωtn1-1t
136 f1eq1 K=PIQK:nωtn1-1tPIQ:nωtn1-1t
137 12 136 ax-mp K:nωtn1-1tPIQ:nωtn1-1t
138 135 137 sylibr φψK:nωtn1-1t
139 eqid Git|K-1iranG¬iG-1K-1i=Git|K-1iranG¬iG-1K-1i
140 eqid tV,rViftFinHcardtGit|K-1iranG¬iG-1K-1izω|¬Git|K-1iranG¬iG-1K-1izt=tV,rViftFinHcardtGit|K-1iranG¬iG-1K-1izω|¬Git|K-1iranG¬iG-1K-1izt
141 eqid cd|cAdc×cdWecmc[˙d-1m/j]˙jtV,rViftFinHcardtGit|K-1iranG¬iG-1K-1izω|¬Git|K-1iranG¬iG-1K-1iztdj×j=m=cd|cAdc×cdWecmc[˙d-1m/j]˙jtV,rViftFinHcardtGit|K-1iranG¬iG-1K-1izω|¬Git|K-1iranG¬iG-1K-1iztdj×j=m
142 141 fpwwe2cbv cd|cAdc×cdWecmc[˙d-1m/j]˙jtV,rViftFinHcardtGit|K-1iranG¬iG-1K-1izω|¬Git|K-1iranG¬iG-1K-1iztdj×j=m=as|aAsa×asWeaba[˙s-1b/w]˙wtV,rViftFinHcardtGit|K-1iranG¬iG-1K-1izω|¬Git|K-1iranG¬iG-1K-1iztsw×w=b
143 eqid domcd|cAdc×cdWecmc[˙d-1m/j]˙jtV,rViftFinHcardtGit|K-1iranG¬iG-1K-1izω|¬Git|K-1iranG¬iG-1K-1iztdj×j=m=domcd|cAdc×cdWecmc[˙d-1m/j]˙jtV,rViftFinHcardtGit|K-1iranG¬iG-1K-1izω|¬Git|K-1iranG¬iG-1K-1iztdj×j=m
144 1 2 3 4 138 139 140 142 143 pwfseqlem4 ¬φ