Metamath Proof Explorer


Theorem qqhrhm

Description: The QQHom homomorphism is a ring homomorphism if the target structure is a field. If the target structure is a division ring, it is a group homomorphism, but not a ring homomorphism, because it does not preserve the ring multiplication operation. (Contributed by Thierry Arnoux, 29-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B=BaseR
qqhval2.1 ×˙=/rR
qqhval2.2 L=ℤRHomR
qqhrhm.1 Q=fld𝑠
Assertion qqhrhm RFieldchrR=0ℚHomRQRingHomR

Proof

Step Hyp Ref Expression
1 qqhval2.0 B=BaseR
2 qqhval2.1 ×˙=/rR
3 qqhval2.2 L=ℤRHomR
4 qqhrhm.1 Q=fld𝑠
5 4 qrngbas =BaseQ
6 4 qrng1 1=1Q
7 eqid 1R=1R
8 qex V
9 cnfldmul ×=fld
10 4 9 ressmulr V×=Q
11 8 10 ax-mp ×=Q
12 eqid R=R
13 4 qdrng QDivRing
14 drngring QDivRingQRing
15 13 14 mp1i RFieldchrR=0QRing
16 isfld RFieldRDivRingRCRing
17 16 simplbi RFieldRDivRing
18 17 adantr RFieldchrR=0RDivRing
19 drngring RDivRingRRing
20 18 19 syl RFieldchrR=0RRing
21 1 2 3 qqh1 RDivRingchrR=0ℚHomR1=1R
22 17 21 sylan RFieldchrR=0ℚHomR1=1R
23 eqid UnitR=UnitR
24 eqid +R=+R
25 16 simprbi RFieldRCRing
26 25 ad2antrr RFieldchrR=0xyRCRing
27 3 zrhrhm RRingLringRingHomR
28 zringbas =Basering
29 28 1 rhmf LringRingHomRL:B
30 20 27 29 3syl RFieldchrR=0L:B
31 30 adantr RFieldchrR=0xyL:B
32 qnumcl xnumerx
33 32 ad2antrl RFieldchrR=0xynumerx
34 31 33 ffvelcdmd RFieldchrR=0xyLnumerxB
35 17 ad2antrr RFieldchrR=0xyRDivRing
36 simplr RFieldchrR=0xychrR=0
37 35 36 jca RFieldchrR=0xyRDivRingchrR=0
38 qdencl xdenomx
39 38 ad2antrl RFieldchrR=0xydenomx
40 39 nnzd RFieldchrR=0xydenomx
41 39 nnne0d RFieldchrR=0xydenomx0
42 eqid 0R=0R
43 1 3 42 elzrhunit RDivRingchrR=0denomxdenomx0LdenomxUnitR
44 37 40 41 43 syl12anc RFieldchrR=0xyLdenomxUnitR
45 qnumcl ynumery
46 45 ad2antll RFieldchrR=0xynumery
47 31 46 ffvelcdmd RFieldchrR=0xyLnumeryB
48 qdencl ydenomy
49 48 ad2antll RFieldchrR=0xydenomy
50 49 nnzd RFieldchrR=0xydenomy
51 49 nnne0d RFieldchrR=0xydenomy0
52 1 3 42 elzrhunit RDivRingchrR=0denomydenomy0LdenomyUnitR
53 37 50 51 52 syl12anc RFieldchrR=0xyLdenomyUnitR
54 1 23 24 2 12 26 34 44 47 53 rdivmuldivd RFieldchrR=0xyLnumerx×˙LdenomxRLnumery×˙Ldenomy=LnumerxRLnumery×˙LdenomxRLdenomy
55 qeqnumdivden xx=numerxdenomx
56 55 fveq2d xℚHomRx=ℚHomRnumerxdenomx
57 56 ad2antrl RFieldchrR=0xyℚHomRx=ℚHomRnumerxdenomx
58 1 2 3 qqhvq RDivRingchrR=0numerxdenomxdenomx0ℚHomRnumerxdenomx=Lnumerx×˙Ldenomx
59 37 33 40 41 58 syl13anc RFieldchrR=0xyℚHomRnumerxdenomx=Lnumerx×˙Ldenomx
60 57 59 eqtrd RFieldchrR=0xyℚHomRx=Lnumerx×˙Ldenomx
61 qeqnumdivden yy=numerydenomy
62 61 fveq2d yℚHomRy=ℚHomRnumerydenomy
63 62 ad2antll RFieldchrR=0xyℚHomRy=ℚHomRnumerydenomy
64 1 2 3 qqhvq RDivRingchrR=0numerydenomydenomy0ℚHomRnumerydenomy=Lnumery×˙Ldenomy
65 37 46 50 51 64 syl13anc RFieldchrR=0xyℚHomRnumerydenomy=Lnumery×˙Ldenomy
66 63 65 eqtrd RFieldchrR=0xyℚHomRy=Lnumery×˙Ldenomy
67 60 66 oveq12d RFieldchrR=0xyℚHomRxRℚHomRy=Lnumerx×˙LdenomxRLnumery×˙Ldenomy
68 55 ad2antrl RFieldchrR=0xyx=numerxdenomx
69 61 ad2antll RFieldchrR=0xyy=numerydenomy
70 68 69 oveq12d RFieldchrR=0xyxy=numerxdenomxnumerydenomy
71 33 zcnd RFieldchrR=0xynumerx
72 40 zcnd RFieldchrR=0xydenomx
73 46 zcnd RFieldchrR=0xynumery
74 50 zcnd RFieldchrR=0xydenomy
75 71 72 73 74 41 51 divmuldivd RFieldchrR=0xynumerxdenomxnumerydenomy=numerxnumerydenomxdenomy
76 70 75 eqtrd RFieldchrR=0xyxy=numerxnumerydenomxdenomy
77 76 fveq2d RFieldchrR=0xyℚHomRxy=ℚHomRnumerxnumerydenomxdenomy
78 33 46 zmulcld RFieldchrR=0xynumerxnumery
79 40 50 zmulcld RFieldchrR=0xydenomxdenomy
80 72 74 41 51 mulne0d RFieldchrR=0xydenomxdenomy0
81 1 2 3 qqhvq RDivRingchrR=0numerxnumerydenomxdenomydenomxdenomy0ℚHomRnumerxnumerydenomxdenomy=Lnumerxnumery×˙Ldenomxdenomy
82 37 78 79 80 81 syl13anc RFieldchrR=0xyℚHomRnumerxnumerydenomxdenomy=Lnumerxnumery×˙Ldenomxdenomy
83 35 19 syl RFieldchrR=0xyRRing
84 83 27 syl RFieldchrR=0xyLringRingHomR
85 zringmulr ×=ring
86 28 85 12 rhmmul LringRingHomRnumerxnumeryLnumerxnumery=LnumerxRLnumery
87 84 33 46 86 syl3anc RFieldchrR=0xyLnumerxnumery=LnumerxRLnumery
88 28 85 12 rhmmul LringRingHomRdenomxdenomyLdenomxdenomy=LdenomxRLdenomy
89 84 40 50 88 syl3anc RFieldchrR=0xyLdenomxdenomy=LdenomxRLdenomy
90 87 89 oveq12d RFieldchrR=0xyLnumerxnumery×˙Ldenomxdenomy=LnumerxRLnumery×˙LdenomxRLdenomy
91 77 82 90 3eqtrd RFieldchrR=0xyℚHomRxy=LnumerxRLnumery×˙LdenomxRLdenomy
92 54 67 91 3eqtr4rd RFieldchrR=0xyℚHomRxy=ℚHomRxRℚHomRy
93 cnfldadd +=+fld
94 4 93 ressplusg V+=+Q
95 8 94 ax-mp +=+Q
96 1 2 3 qqhf RDivRingchrR=0ℚHomR:B
97 17 96 sylan RFieldchrR=0ℚHomR:B
98 33 50 zmulcld RFieldchrR=0xynumerxdenomy
99 31 98 ffvelcdmd RFieldchrR=0xyLnumerxdenomyB
100 46 40 zmulcld RFieldchrR=0xynumerydenomx
101 31 100 ffvelcdmd RFieldchrR=0xyLnumerydenomxB
102 23 12 unitmulcl RRingLdenomxUnitRLdenomyUnitRLdenomxRLdenomyUnitR
103 83 44 53 102 syl3anc RFieldchrR=0xyLdenomxRLdenomyUnitR
104 89 103 eqeltrd RFieldchrR=0xyLdenomxdenomyUnitR
105 1 23 24 2 dvrdir RRingLnumerxdenomyBLnumerydenomxBLdenomxdenomyUnitRLnumerxdenomy+RLnumerydenomx×˙Ldenomxdenomy=Lnumerxdenomy×˙Ldenomxdenomy+RLnumerydenomx×˙Ldenomxdenomy
106 83 99 101 104 105 syl13anc RFieldchrR=0xyLnumerxdenomy+RLnumerydenomx×˙Ldenomxdenomy=Lnumerxdenomy×˙Ldenomxdenomy+RLnumerydenomx×˙Ldenomxdenomy
107 68 69 oveq12d RFieldchrR=0xyx+y=numerxdenomx+numerydenomy
108 71 72 73 74 41 51 divadddivd RFieldchrR=0xynumerxdenomx+numerydenomy=numerxdenomy+numerydenomxdenomxdenomy
109 107 108 eqtrd RFieldchrR=0xyx+y=numerxdenomy+numerydenomxdenomxdenomy
110 109 fveq2d RFieldchrR=0xyℚHomRx+y=ℚHomRnumerxdenomy+numerydenomxdenomxdenomy
111 98 100 zaddcld RFieldchrR=0xynumerxdenomy+numerydenomx
112 1 2 3 qqhvq RDivRingchrR=0numerxdenomy+numerydenomxdenomxdenomydenomxdenomy0ℚHomRnumerxdenomy+numerydenomxdenomxdenomy=Lnumerxdenomy+numerydenomx×˙Ldenomxdenomy
113 37 111 79 80 112 syl13anc RFieldchrR=0xyℚHomRnumerxdenomy+numerydenomxdenomxdenomy=Lnumerxdenomy+numerydenomx×˙Ldenomxdenomy
114 rhmghm LringRingHomRLringGrpHomR
115 84 114 syl RFieldchrR=0xyLringGrpHomR
116 zringplusg +=+ring
117 28 116 24 ghmlin LringGrpHomRnumerxdenomynumerydenomxLnumerxdenomy+numerydenomx=Lnumerxdenomy+RLnumerydenomx
118 117 oveq1d LringGrpHomRnumerxdenomynumerydenomxLnumerxdenomy+numerydenomx×˙Ldenomxdenomy=Lnumerxdenomy+RLnumerydenomx×˙Ldenomxdenomy
119 115 98 100 118 syl3anc RFieldchrR=0xyLnumerxdenomy+numerydenomx×˙Ldenomxdenomy=Lnumerxdenomy+RLnumerydenomx×˙Ldenomxdenomy
120 110 113 119 3eqtrd RFieldchrR=0xyℚHomRx+y=Lnumerxdenomy+RLnumerydenomx×˙Ldenomxdenomy
121 23 28 2 85 rhmdvd LringRingHomRnumerxdenomxdenomyLdenomxUnitRLdenomyUnitRLnumerx×˙Ldenomx=Lnumerxdenomy×˙Ldenomxdenomy
122 84 33 40 50 44 53 121 syl132anc RFieldchrR=0xyLnumerx×˙Ldenomx=Lnumerxdenomy×˙Ldenomxdenomy
123 57 59 122 3eqtrd RFieldchrR=0xyℚHomRx=Lnumerxdenomy×˙Ldenomxdenomy
124 23 28 2 85 rhmdvd LringRingHomRnumerydenomydenomxLdenomyUnitRLdenomxUnitRLnumery×˙Ldenomy=Lnumerydenomx×˙Ldenomydenomx
125 84 46 50 40 53 44 124 syl132anc RFieldchrR=0xyLnumery×˙Ldenomy=Lnumerydenomx×˙Ldenomydenomx
126 72 74 mulcomd RFieldchrR=0xydenomxdenomy=denomydenomx
127 126 fveq2d RFieldchrR=0xyLdenomxdenomy=Ldenomydenomx
128 127 oveq2d RFieldchrR=0xyLnumerydenomx×˙Ldenomxdenomy=Lnumerydenomx×˙Ldenomydenomx
129 125 65 128 3eqtr4d RFieldchrR=0xyℚHomRnumerydenomy=Lnumerydenomx×˙Ldenomxdenomy
130 63 129 eqtrd RFieldchrR=0xyℚHomRy=Lnumerydenomx×˙Ldenomxdenomy
131 123 130 oveq12d RFieldchrR=0xyℚHomRx+RℚHomRy=Lnumerxdenomy×˙Ldenomxdenomy+RLnumerydenomx×˙Ldenomxdenomy
132 106 120 131 3eqtr4d RFieldchrR=0xyℚHomRx+y=ℚHomRx+RℚHomRy
133 5 6 7 11 12 15 20 22 92 1 95 24 97 132 isrhmd RFieldchrR=0ℚHomRQRingHomR