| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qsidom.1 |  | 
						
							| 2 |  | crngring |  | 
						
							| 3 |  | prmidlidl |  | 
						
							| 4 | 2 3 | sylan |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 1 5 | quscrng |  | 
						
							| 7 | 4 6 | syldan |  | 
						
							| 8 | 5 | crng2idl |  | 
						
							| 9 | 8 | eleq2d |  | 
						
							| 10 | 9 | biimpa |  | 
						
							| 11 | 4 10 | syldan |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 12 | qusring |  | 
						
							| 14 | 2 11 13 | syl2an2r |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 15 16 | ring0cl |  | 
						
							| 18 | 14 17 | syl |  | 
						
							| 19 | 18 | snssd |  | 
						
							| 20 |  | lidlnsg |  | 
						
							| 21 | 2 20 | sylan |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 1 22 | qus0 |  | 
						
							| 24 | 21 23 | syl |  | 
						
							| 25 | 5 | lidlsubg |  | 
						
							| 26 | 2 25 | sylan |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 27 28 22 | eqgid |  | 
						
							| 30 | 26 29 | syl |  | 
						
							| 31 | 24 30 | eqtr3d |  | 
						
							| 32 | 4 31 | syldan |  | 
						
							| 33 | 32 | sneqd |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 27 34 | isprmidlc |  | 
						
							| 36 | 35 | biimpa |  | 
						
							| 37 | 36 | simp2d |  | 
						
							| 38 |  | ringgrp |  | 
						
							| 39 | 2 38 | syl |  | 
						
							| 40 | 39 | ad2antrr |  | 
						
							| 41 | 2 | ad2antrr |  | 
						
							| 42 | 4 | adantr |  | 
						
							| 43 | 41 42 25 | syl2anc |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 | 27 1 | qustrivr |  | 
						
							| 46 | 40 43 44 45 | syl3anc |  | 
						
							| 47 | 37 46 | mteqand |  | 
						
							| 48 | 47 | necomd |  | 
						
							| 49 | 33 48 | eqnetrd |  | 
						
							| 50 |  | pssdifn0 |  | 
						
							| 51 | 19 49 50 | syl2anc |  | 
						
							| 52 |  | n0 |  | 
						
							| 53 | 51 52 | sylib |  | 
						
							| 54 | 16 15 | ringelnzr |  | 
						
							| 55 | 54 | ex |  | 
						
							| 56 | 55 | exlimdv |  | 
						
							| 57 | 14 53 56 | sylc |  | 
						
							| 58 | 36 | simp3d |  | 
						
							| 59 | 58 | ad7antr |  | 
						
							| 60 |  | simp-4r |  | 
						
							| 61 |  | simplr |  | 
						
							| 62 |  | simp-8l |  | 
						
							| 63 | 62 39 | syl |  | 
						
							| 64 | 4 | ad7antr |  | 
						
							| 65 | 62 64 26 | syl2anc |  | 
						
							| 66 | 1 | a1i |  | 
						
							| 67 |  | eqidd |  | 
						
							| 68 | 27 28 | eqger |  | 
						
							| 69 | 26 68 | syl |  | 
						
							| 70 |  | simpl |  | 
						
							| 71 | 27 28 12 34 | 2idlcpbl |  | 
						
							| 72 | 2 10 71 | syl2an2r |  | 
						
							| 73 | 2 | ad2antrr |  | 
						
							| 74 |  | simprl |  | 
						
							| 75 |  | simprr |  | 
						
							| 76 | 27 34 | ringcl |  | 
						
							| 77 | 73 74 75 76 | syl3anc |  | 
						
							| 78 |  | eqid |  | 
						
							| 79 | 66 67 69 70 72 77 34 78 | qusmulval |  | 
						
							| 80 | 62 64 60 61 79 | syl211anc |  | 
						
							| 81 |  | simpr |  | 
						
							| 82 | 81 | ad4antr |  | 
						
							| 83 |  | simpllr |  | 
						
							| 84 |  | simpr |  | 
						
							| 85 | 83 84 | oveq12d |  | 
						
							| 86 | 62 64 31 | syl2anc |  | 
						
							| 87 | 82 85 86 | 3eqtr3d |  | 
						
							| 88 | 80 87 | eqtr3d |  | 
						
							| 89 | 28 | eqg0el |  | 
						
							| 90 | 89 | biimpa |  | 
						
							| 91 | 63 65 88 90 | syl21anc |  | 
						
							| 92 |  | rsp2 |  | 
						
							| 93 | 92 | impl |  | 
						
							| 94 | 93 | imp |  | 
						
							| 95 | 59 60 61 91 94 | syl1111anc |  | 
						
							| 96 | 86 | eqeq2d |  | 
						
							| 97 | 83 | eqeq1d |  | 
						
							| 98 | 28 | eqg0el |  | 
						
							| 99 | 63 65 98 | syl2anc |  | 
						
							| 100 | 96 97 99 | 3bitrrd |  | 
						
							| 101 | 86 | eqeq2d |  | 
						
							| 102 | 84 | eqeq1d |  | 
						
							| 103 | 28 | eqg0el |  | 
						
							| 104 | 63 65 103 | syl2anc |  | 
						
							| 105 | 101 102 104 | 3bitrrd |  | 
						
							| 106 | 100 105 | orbi12d |  | 
						
							| 107 | 95 106 | mpbid |  | 
						
							| 108 |  | simplr |  | 
						
							| 109 | 1 | a1i |  | 
						
							| 110 |  | eqidd |  | 
						
							| 111 |  | ovexd |  | 
						
							| 112 |  | id |  | 
						
							| 113 | 109 110 111 112 | qusbas |  | 
						
							| 114 | 113 | ad4antr |  | 
						
							| 115 | 108 114 | eleqtrrd |  | 
						
							| 116 | 115 | ad2antrr |  | 
						
							| 117 |  | elqsi |  | 
						
							| 118 | 116 117 | syl |  | 
						
							| 119 | 107 118 | r19.29a |  | 
						
							| 120 |  | simpllr |  | 
						
							| 121 | 120 114 | eleqtrrd |  | 
						
							| 122 |  | elqsi |  | 
						
							| 123 | 121 122 | syl |  | 
						
							| 124 | 119 123 | r19.29a |  | 
						
							| 125 | 124 | ex |  | 
						
							| 126 | 125 | anasss |  | 
						
							| 127 | 126 | ralrimivva |  | 
						
							| 128 | 15 78 16 | isdomn |  | 
						
							| 129 | 57 127 128 | sylanbrc |  | 
						
							| 130 |  | isidom |  | 
						
							| 131 | 7 129 130 | sylanbrc |  |