Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|
2 |
|
rng2idlring.i |
|
3 |
|
rng2idlring.j |
|
4 |
|
rng2idlring.u |
|
5 |
|
rng2idlring.b |
|
6 |
|
rng2idlring.t |
|
7 |
|
rng2idlring.1 |
|
8 |
|
rngqiprngim.g |
|
9 |
|
rngqiprngim.q |
|
10 |
|
rngqiprngim.c |
|
11 |
|
rngqiprngim.p |
|
12 |
|
rngqiprngim.f |
|
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf |
|
14 |
|
elxpi |
|
15 |
10
|
eleq2i |
|
16 |
|
vex |
|
17 |
8 9 5
|
quselbas |
|
18 |
1 16 17
|
sylancl |
|
19 |
15 18
|
bitrid |
|
20 |
|
eqid |
|
21 |
|
rnggrp |
|
22 |
1 21
|
syl |
|
23 |
22
|
ad2antrr |
|
24 |
|
simpr |
|
25 |
1
|
ad2antrr |
|
26 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|
27 |
26
|
ad2antrr |
|
28 |
5 6
|
rngcl |
|
29 |
25 27 24 28
|
syl3anc |
|
30 |
|
eqid |
|
31 |
5 30
|
grpsubcl |
|
32 |
23 24 29 31
|
syl3anc |
|
33 |
|
eqid |
|
34 |
5 33
|
2idlss |
|
35 |
2 34
|
syl |
|
36 |
35
|
sselda |
|
37 |
36
|
adantr |
|
38 |
5 20 23 32 37
|
grpcld |
|
39 |
38
|
adantr |
|
40 |
|
opeq1 |
|
41 |
40
|
adantl |
|
42 |
|
eceq1 |
|
43 |
|
oveq2 |
|
44 |
42 43
|
opeq12d |
|
45 |
41 44
|
eqeqan12d |
|
46 |
|
rngabl |
|
47 |
1 46
|
syl |
|
48 |
47
|
ad2antrr |
|
49 |
5 20 30
|
ablsubaddsub |
|
50 |
48 24 29 37 49
|
syl13anc |
|
51 |
4
|
ringgrpd |
|
52 |
51
|
ad2antrr |
|
53 |
|
eqid |
|
54 |
2 3 53
|
2idlbas |
|
55 |
54
|
eqcomd |
|
56 |
55
|
eleq2d |
|
57 |
56
|
biimpa |
|
58 |
57
|
adantr |
|
59 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
60 |
59
|
adantlr |
|
61 |
|
eqid |
|
62 |
53 61
|
grpsubcl |
|
63 |
52 58 60 62
|
syl3anc |
|
64 |
|
ringrng |
|
65 |
4 64
|
syl |
|
66 |
3 65
|
eqeltrrid |
|
67 |
1 2 66
|
rng2idlnsg |
|
68 |
|
nsgsubg |
|
69 |
67 68
|
syl |
|
70 |
69
|
ad2antrr |
|
71 |
|
simplr |
|
72 |
54
|
ad2antrr |
|
73 |
60 72
|
eleqtrd |
|
74 |
30 3 61
|
subgsub |
|
75 |
70 71 73 74
|
syl3anc |
|
76 |
55
|
ad2antrr |
|
77 |
63 75 76
|
3eltr4d |
|
78 |
50 77
|
eqeltrd |
|
79 |
5 30 8
|
qusecsub |
|
80 |
48 70 24 38 79
|
syl22anc |
|
81 |
78 80
|
mpbird |
|
82 |
1 2 3 4 5 6 7
|
rngqiprngimfolem |
|
83 |
82
|
3expa |
|
84 |
83
|
eqcomd |
|
85 |
81 84
|
opeq12d |
|
86 |
85
|
adantr |
|
87 |
39 45 86
|
rspcedvd |
|
88 |
87
|
rexlimdva2 |
|
89 |
88
|
ex |
|
90 |
89
|
com23 |
|
91 |
19 90
|
sylbid |
|
92 |
91
|
impd |
|
93 |
92
|
com12 |
|
94 |
93
|
adantl |
|
95 |
94
|
imp |
|
96 |
|
simplll |
|
97 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
98 |
97
|
adantll |
|
99 |
96 98
|
eqeq12d |
|
100 |
99
|
rexbidva |
|
101 |
95 100
|
mpbird |
|
102 |
101
|
ex |
|
103 |
102
|
exlimivv |
|
104 |
14 103
|
syl |
|
105 |
104
|
impcom |
|
106 |
105
|
ralrimiva |
|
107 |
|
dffo3 |
|
108 |
13 106 107
|
sylanbrc |
|