Metamath Proof Explorer


Theorem rngqiprngimfo

Description: F is a function from (the base set of) a non-unital ring onto the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 5-Mar-2025) (Proof shortened by AV, 24-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprngimfo φ F : B onto C × I

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
13 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf φ F : B C × I
14 elxpi b C × I p q b = p q p C q I
15 10 eleq2i p C p Base Q
16 vex p V
17 8 9 5 quselbas R Rng p V p Base Q c B p = c ˙
18 1 16 17 sylancl φ p Base Q c B p = c ˙
19 15 18 bitrid φ p C c B p = c ˙
20 eqid + R = + R
21 rnggrp R Rng R Grp
22 1 21 syl φ R Grp
23 22 ad2antrr φ q I c B R Grp
24 simpr φ q I c B c B
25 1 ad2antrr φ q I c B R Rng
26 1 2 3 4 5 6 7 rngqiprng1elbas φ 1 ˙ B
27 26 ad2antrr φ q I c B 1 ˙ B
28 5 6 rngcl R Rng 1 ˙ B c B 1 ˙ · ˙ c B
29 25 27 24 28 syl3anc φ q I c B 1 ˙ · ˙ c B
30 eqid - R = - R
31 5 30 grpsubcl R Grp c B 1 ˙ · ˙ c B c - R 1 ˙ · ˙ c B
32 23 24 29 31 syl3anc φ q I c B c - R 1 ˙ · ˙ c B
33 eqid 2Ideal R = 2Ideal R
34 5 33 2idlss I 2Ideal R I B
35 2 34 syl φ I B
36 35 sselda φ q I q B
37 36 adantr φ q I c B q B
38 5 20 23 32 37 grpcld φ q I c B c - R 1 ˙ · ˙ c + R q B
39 38 adantr φ q I c B p = c ˙ c - R 1 ˙ · ˙ c + R q B
40 opeq1 p = c ˙ p q = c ˙ q
41 40 adantl φ q I c B p = c ˙ p q = c ˙ q
42 eceq1 a = c - R 1 ˙ · ˙ c + R q a ˙ = c - R 1 ˙ · ˙ c + R q ˙
43 oveq2 a = c - R 1 ˙ · ˙ c + R q 1 ˙ · ˙ a = 1 ˙ · ˙ c - R 1 ˙ · ˙ c + R q
44 42 43 opeq12d a = c - R 1 ˙ · ˙ c + R q a ˙ 1 ˙ · ˙ a = c - R 1 ˙ · ˙ c + R q ˙ 1 ˙ · ˙ c - R 1 ˙ · ˙ c + R q
45 41 44 eqeqan12d φ q I c B p = c ˙ a = c - R 1 ˙ · ˙ c + R q p q = a ˙ 1 ˙ · ˙ a c ˙ q = c - R 1 ˙ · ˙ c + R q ˙ 1 ˙ · ˙ c - R 1 ˙ · ˙ c + R q
46 rngabl R Rng R Abel
47 1 46 syl φ R Abel
48 47 ad2antrr φ q I c B R Abel
49 5 20 30 ablsubaddsub R Abel c B 1 ˙ · ˙ c B q B c - R 1 ˙ · ˙ c + R q - R c = q - R 1 ˙ · ˙ c
50 48 24 29 37 49 syl13anc φ q I c B c - R 1 ˙ · ˙ c + R q - R c = q - R 1 ˙ · ˙ c
51 4 ringgrpd φ J Grp
52 51 ad2antrr φ q I c B J Grp
53 eqid Base J = Base J
54 2 3 53 2idlbas φ Base J = I
55 54 eqcomd φ I = Base J
56 55 eleq2d φ q I q Base J
57 56 biimpa φ q I q Base J
58 57 adantr φ q I c B q Base J
59 1 2 3 4 5 6 7 rngqiprngghmlem1 φ c B 1 ˙ · ˙ c Base J
60 59 adantlr φ q I c B 1 ˙ · ˙ c Base J
61 eqid - J = - J
62 53 61 grpsubcl J Grp q Base J 1 ˙ · ˙ c Base J q - J 1 ˙ · ˙ c Base J
63 52 58 60 62 syl3anc φ q I c B q - J 1 ˙ · ˙ c Base J
64 ringrng J Ring J Rng
65 4 64 syl φ J Rng
66 3 65 eqeltrrid φ R 𝑠 I Rng
67 1 2 66 rng2idlnsg φ I NrmSGrp R
68 nsgsubg I NrmSGrp R I SubGrp R
69 67 68 syl φ I SubGrp R
70 69 ad2antrr φ q I c B I SubGrp R
71 simplr φ q I c B q I
72 54 ad2antrr φ q I c B Base J = I
73 60 72 eleqtrd φ q I c B 1 ˙ · ˙ c I
74 30 3 61 subgsub I SubGrp R q I 1 ˙ · ˙ c I q - R 1 ˙ · ˙ c = q - J 1 ˙ · ˙ c
75 70 71 73 74 syl3anc φ q I c B q - R 1 ˙ · ˙ c = q - J 1 ˙ · ˙ c
76 55 ad2antrr φ q I c B I = Base J
77 63 75 76 3eltr4d φ q I c B q - R 1 ˙ · ˙ c I
78 50 77 eqeltrd φ q I c B c - R 1 ˙ · ˙ c + R q - R c I
79 5 30 8 qusecsub R Abel I SubGrp R c B c - R 1 ˙ · ˙ c + R q B c ˙ = c - R 1 ˙ · ˙ c + R q ˙ c - R 1 ˙ · ˙ c + R q - R c I
80 48 70 24 38 79 syl22anc φ q I c B c ˙ = c - R 1 ˙ · ˙ c + R q ˙ c - R 1 ˙ · ˙ c + R q - R c I
81 78 80 mpbird φ q I c B c ˙ = c - R 1 ˙ · ˙ c + R q ˙
82 1 2 3 4 5 6 7 rngqiprngimfolem φ q I c B 1 ˙ · ˙ c - R 1 ˙ · ˙ c + R q = q
83 82 3expa φ q I c B 1 ˙ · ˙ c - R 1 ˙ · ˙ c + R q = q
84 83 eqcomd φ q I c B q = 1 ˙ · ˙ c - R 1 ˙ · ˙ c + R q
85 81 84 opeq12d φ q I c B c ˙ q = c - R 1 ˙ · ˙ c + R q ˙ 1 ˙ · ˙ c - R 1 ˙ · ˙ c + R q
86 85 adantr φ q I c B p = c ˙ c ˙ q = c - R 1 ˙ · ˙ c + R q ˙ 1 ˙ · ˙ c - R 1 ˙ · ˙ c + R q
87 39 45 86 rspcedvd φ q I c B p = c ˙ a B p q = a ˙ 1 ˙ · ˙ a
88 87 rexlimdva2 φ q I c B p = c ˙ a B p q = a ˙ 1 ˙ · ˙ a
89 88 ex φ q I c B p = c ˙ a B p q = a ˙ 1 ˙ · ˙ a
90 89 com23 φ c B p = c ˙ q I a B p q = a ˙ 1 ˙ · ˙ a
91 19 90 sylbid φ p C q I a B p q = a ˙ 1 ˙ · ˙ a
92 91 impd φ p C q I a B p q = a ˙ 1 ˙ · ˙ a
93 92 com12 p C q I φ a B p q = a ˙ 1 ˙ · ˙ a
94 93 adantl b = p q p C q I φ a B p q = a ˙ 1 ˙ · ˙ a
95 94 imp b = p q p C q I φ a B p q = a ˙ 1 ˙ · ˙ a
96 simplll b = p q p C q I φ a B b = p q
97 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φ a B F a = a ˙ 1 ˙ · ˙ a
98 97 adantll b = p q p C q I φ a B F a = a ˙ 1 ˙ · ˙ a
99 96 98 eqeq12d b = p q p C q I φ a B b = F a p q = a ˙ 1 ˙ · ˙ a
100 99 rexbidva b = p q p C q I φ a B b = F a a B p q = a ˙ 1 ˙ · ˙ a
101 95 100 mpbird b = p q p C q I φ a B b = F a
102 101 ex b = p q p C q I φ a B b = F a
103 102 exlimivv p q b = p q p C q I φ a B b = F a
104 14 103 syl b C × I φ a B b = F a
105 104 impcom φ b C × I a B b = F a
106 105 ralrimiva φ b C × I a B b = F a
107 dffo3 F : B onto C × I F : B C × I b C × I a B b = F a
108 13 106 107 sylanbrc φ F : B onto C × I