Metamath Proof Explorer


Theorem rpnnen2lem12

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)

Ref Expression
Hypothesis rpnnen2.1 F=x𝒫nifnx13n0
Assertion rpnnen2lem12 𝒫01

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 ovex 01V
3 elpwi y𝒫y
4 nnuz =1
5 4 sumeq1i kFyk=k1Fyk
6 1nn 1
7 1 rpnnen2lem6 y1k1Fyk
8 6 7 mpan2 yk1Fyk
9 5 8 eqeltrid ykFyk
10 3 9 syl y𝒫kFyk
11 1zzd y𝒫1
12 eqidd y𝒫kFyk=Fyk
13 1 rpnnen2lem2 yFy:
14 3 13 syl y𝒫Fy:
15 14 ffvelcdmda y𝒫kFyk
16 1 rpnnen2lem5 y1seq1+Fydom
17 3 6 16 sylancl y𝒫seq1+Fydom
18 ssid
19 1 rpnnen2lem4 yk0FykFykFk
20 18 19 mp3an2 yk0FykFykFk
21 20 simpld yk0Fyk
22 3 21 sylan y𝒫k0Fyk
23 4 11 12 15 17 22 isumge0 y𝒫0kFyk
24 halfre 12
25 24 a1i y𝒫12
26 1re 1
27 26 a1i y𝒫1
28 1 rpnnen2lem7 y1k1Fykk1Fk
29 18 6 28 mp3an23 yk1Fykk1Fk
30 3 29 syl y𝒫k1Fykk1Fk
31 eqid 1=1
32 eqidd y𝒫k1Fk=Fk
33 elnnuz kk1
34 1 rpnnen2lem2 F:
35 18 34 ax-mp F:
36 35 ffvelcdmi kFk
37 36 recnd kFk
38 33 37 sylbir k1Fk
39 38 adantl y𝒫k1Fk
40 1 rpnnen2lem3 seq1+F12
41 40 a1i y𝒫seq1+F12
42 31 11 32 39 41 isumclim y𝒫k1Fk=12
43 30 42 breqtrd y𝒫k1Fyk12
44 5 43 eqbrtrid y𝒫kFyk12
45 halflt1 12<1
46 24 26 45 ltleii 121
47 46 a1i y𝒫121
48 10 25 27 44 47 letrd y𝒫kFyk1
49 elicc01 kFyk01kFyk0kFykkFyk1
50 10 23 48 49 syl3anbrc y𝒫kFyk01
51 elpwi z𝒫z
52 ssdifss yyz
53 ssdifss zzy
54 unss yzzyyzzy
55 54 biimpi yzzyyzzy
56 52 53 55 syl2an yzyzzy
57 3 51 56 syl2an y𝒫z𝒫yzzy
58 eqss y=zyzzy
59 ssdif0 yzyz=
60 ssdif0 zyzy=
61 59 60 anbi12i yzzyyz=zy=
62 un00 yz=zy=yzzy=
63 58 61 62 3bitri y=zyzzy=
64 63 necon3bii yzyzzy
65 64 biimpi yzyzzy
66 nnwo yzzyyzzymyzzynyzzymn
67 57 65 66 syl2an y𝒫z𝒫yzmyzzynyzzymn
68 67 ex y𝒫z𝒫yzmyzzynyzzymn
69 57 sselda y𝒫z𝒫myzzym
70 df-ral nyzzymnnnyzzymn
71 con34b nyzzymn¬mn¬nyzzy
72 eldif nyzny¬nz
73 eldif nzynz¬ny
74 72 73 orbi12i nyznzyny¬nznz¬ny
75 elun nyzzynyznzy
76 xor ¬nynzny¬nznz¬ny
77 74 75 76 3bitr4ri ¬nynznyzzy
78 77 con1bii ¬nyzzynynz
79 78 imbi2i ¬mn¬nyzzy¬mnnynz
80 71 79 bitri nyzzymn¬mnnynz
81 80 albii nnyzzymnn¬mnnynz
82 70 81 bitri nyzzymnn¬mnnynz
83 alral n¬mnnynzn¬mnnynz
84 nnre nn
85 nnre mm
86 ltnle nmn<m¬mn
87 84 85 86 syl2anr mnn<m¬mn
88 87 imbi1d mnn<mnynz¬mnnynz
89 88 ralbidva mnn<mnynzn¬mnnynz
90 83 89 imbitrrid mn¬mnnynznn<mnynz
91 82 90 biimtrid mnyzzymnnn<mnynz
92 69 91 syl y𝒫z𝒫myzzynyzzymnnn<mnynz
93 92 reximdva y𝒫z𝒫myzzynyzzymnmyzzynn<mnynz
94 68 93 syld y𝒫z𝒫yzmyzzynn<mnynz
95 rexun myzzynn<mnynzmyznn<mnynzmzynn<mnynz
96 94 95 imbitrdi y𝒫z𝒫yzmyznn<mnynzmzynn<mnynz
97 simpll yzmyznn<mnynzy
98 simplr yzmyznn<mnynzz
99 simprl yzmyznn<mnynzmyz
100 simprr yzmyznn<mnynznn<mnynz
101 biid kFyk=kFzkkFyk=kFzk
102 1 97 98 99 100 101 rpnnen2lem11 yzmyznn<mnynz¬kFyk=kFzk
103 102 rexlimdvaa yzmyznn<mnynz¬kFyk=kFzk
104 simplr yzmzynn<mnynzz
105 simpll yzmzynn<mnynzy
106 simprl yzmzynn<mnynzmzy
107 simprr yzmzynn<mnynznn<mnynz
108 bicom nznynynz
109 108 imbi2i n<mnznyn<mnynz
110 109 ralbii nn<mnznynn<mnynz
111 107 110 sylibr yzmzynn<mnynznn<mnzny
112 eqcom kFyk=kFzkkFzk=kFyk
113 1 104 105 106 111 112 rpnnen2lem11 yzmzynn<mnynz¬kFyk=kFzk
114 113 rexlimdvaa yzmzynn<mnynz¬kFyk=kFzk
115 103 114 jaod yzmyznn<mnynzmzynn<mnynz¬kFyk=kFzk
116 3 51 115 syl2an y𝒫z𝒫myznn<mnynzmzynn<mnynz¬kFyk=kFzk
117 96 116 syld y𝒫z𝒫yz¬kFyk=kFzk
118 117 necon4ad y𝒫z𝒫kFyk=kFzky=z
119 fveq2 y=zFy=Fz
120 119 fveq1d y=zFyk=Fzk
121 120 sumeq2sdv y=zkFyk=kFzk
122 118 121 impbid1 y𝒫z𝒫kFyk=kFzky=z
123 50 122 dom2 01V𝒫01
124 2 123 ax-mp 𝒫01