Metamath Proof Explorer


Theorem sitmcl

Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018)

Ref Expression
Hypotheses sitmcl.0 φWMnd
sitmcl.1 φW∞MetSp
sitmcl.2 φMranmeasures
sitmcl.3 φFMW
sitmcl.4 φGMW
Assertion sitmcl φ|G-F|MW0+∞

Proof

Step Hyp Ref Expression
1 sitmcl.0 φWMnd
2 sitmcl.1 φW∞MetSp
3 sitmcl.2 φMranmeasures
4 sitmcl.3 φFMW
5 sitmcl.4 φGMW
6 eqid distW=distW
7 6 2 3 4 5 sitmfval φ|G-F|MW=𝑠*𝑠0+∞FdistWfGdM
8 xrge0base 0+∞=Base𝑠*𝑠0+∞
9 xrge0topn TopOpen𝑠*𝑠0+∞=ordTop𝑡0+∞
10 9 eqcomi ordTop𝑡0+∞=TopOpen𝑠*𝑠0+∞
11 eqid 𝛔ordTop𝑡0+∞=𝛔ordTop𝑡0+∞
12 xrge00 0=0𝑠*𝑠0+∞
13 ovex 0+∞V
14 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
15 ax-xrsvsca 𝑒=𝑠*
16 14 15 ressvsca 0+∞V𝑒=𝑠*𝑠0+∞
17 13 16 ax-mp 𝑒=𝑠*𝑠0+∞
18 ax-xrssca fld=Scalar𝑠*
19 14 18 resssca 0+∞Vfld=Scalar𝑠*𝑠0+∞
20 13 19 ax-mp fld=Scalar𝑠*𝑠0+∞
21 20 fveq2i ℝHomfld=ℝHomScalar𝑠*𝑠0+∞
22 ovexd φ𝑠*𝑠0+∞V
23 eqid BaseW=BaseW
24 eqid TopOpenW=TopOpenW
25 eqid 𝛔TopOpenW=𝛔TopOpenW
26 eqid 0W=0W
27 eqid W=W
28 eqid ℝHomScalarW=ℝHomScalarW
29 23 24 25 26 27 28 2 3 4 sibff φF:domMTopOpenW
30 xmstps W∞MetSpWTopSp
31 23 24 tpsuni WTopSpBaseW=TopOpenW
32 2 30 31 3syl φBaseW=TopOpenW
33 feq3 BaseW=TopOpenWF:domMBaseWF:domMTopOpenW
34 32 33 syl φF:domMBaseWF:domMTopOpenW
35 29 34 mpbird φF:domMBaseW
36 23 24 25 26 27 28 2 3 5 sibff φG:domMTopOpenW
37 feq3 BaseW=TopOpenWG:domMBaseWG:domMTopOpenW
38 32 37 syl φG:domMBaseWG:domMTopOpenW
39 36 38 mpbird φG:domMBaseW
40 dmexg MranmeasuresdomMV
41 uniexg domMVdomMV
42 3 40 41 3syl φdomMV
43 35 39 42 ofresid φFdistWfG=FdistWBaseW×BaseWfG
44 2 30 syl φWTopSp
45 eqid distWBaseW×BaseW=distWBaseW×BaseW
46 23 45 xmsxmet W∞MetSpdistWBaseW×BaseW∞MetBaseW
47 xmetpsmet distWBaseW×BaseW∞MetBaseWdistWBaseW×BaseWPsMetBaseW
48 2 46 47 3syl φdistWBaseW×BaseWPsMetBaseW
49 psmetxrge0 distWBaseW×BaseWPsMetBaseWdistWBaseW×BaseW:BaseW×BaseW0+∞
50 48 49 syl φdistWBaseW×BaseW:BaseW×BaseW0+∞
51 xrge0tps 𝑠*𝑠0+∞TopSp
52 51 a1i φ𝑠*𝑠0+∞TopSp
53 24 23 45 xmstopn W∞MetSpTopOpenW=MetOpendistWBaseW×BaseW
54 2 53 syl φTopOpenW=MetOpendistWBaseW×BaseW
55 eqid MetOpendistWBaseW×BaseW=MetOpendistWBaseW×BaseW
56 55 methaus distWBaseW×BaseW∞MetBaseWMetOpendistWBaseW×BaseWHaus
57 2 46 56 3syl φMetOpendistWBaseW×BaseWHaus
58 54 57 eqeltrd φTopOpenWHaus
59 haust1 TopOpenWHausTopOpenWFre
60 58 59 syl φTopOpenWFre
61 2 46 syl φdistWBaseW×BaseW∞MetBaseW
62 23 26 mndidcl WMnd0WBaseW
63 1 62 syl φ0WBaseW
64 xmet0 distWBaseW×BaseW∞MetBaseW0WBaseW0WdistWBaseW×BaseW0W=0
65 61 63 64 syl2anc φ0WdistWBaseW×BaseW0W=0
66 65 12 eqtrdi φ0WdistWBaseW×BaseW0W=0𝑠*𝑠0+∞
67 23 24 25 26 27 28 2 3 4 8 44 50 5 52 60 66 sibfof φFdistWBaseW×BaseWfGM𝑠*𝑠0+∞
68 43 67 eqeltrd φFdistWfGM𝑠*𝑠0+∞
69 rebase =Basefld
70 69 69 xpeq12i 2=Basefld×Basefld
71 70 reseq2i distfld2=distfldBasefld×Basefld
72 xrge0cmn 𝑠*𝑠0+∞CMnd
73 72 a1i φ𝑠*𝑠0+∞CMnd
74 rerrext fldℝExt
75 20 74 eqeltrri Scalar𝑠*𝑠0+∞ℝExt
76 75 a1i φScalar𝑠*𝑠0+∞ℝExt
77 rrhre ℝHomfld=I
78 77 imaeq1i ℝHomfld0+∞=I0+∞
79 0re 0
80 pnfxr +∞*
81 icossre 0+∞*0+∞
82 79 80 81 mp2an 0+∞
83 resiima 0+∞I0+∞=0+∞
84 82 83 ax-mp I0+∞=0+∞
85 78 84 eqtri ℝHomfld0+∞=0+∞
86 icossicc 0+∞0+∞
87 85 86 eqsstri ℝHomfld0+∞0+∞
88 87 sseli mℝHomfld0+∞m0+∞
89 88 3ad2ant2 φmℝHomfld0+∞x0+∞m0+∞
90 simp3 φmℝHomfld0+∞x0+∞x0+∞
91 ge0xmulcl m0+∞x0+∞m𝑒x0+∞
92 89 90 91 syl2anc φmℝHomfld0+∞x0+∞m𝑒x0+∞
93 8 10 11 12 17 21 22 3 68 20 71 52 73 76 92 sitgclg φ𝑠*𝑠0+∞FdistWfGdM0+∞
94 7 93 eqeltrd φ|G-F|MW0+∞