Metamath Proof Explorer


Theorem smadiadetlem3

Description: Lemma 3 for smadiadet . (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A=NMatR
marep01ma.b B=BaseA
marep01ma.r RCRing
marep01ma.0 0˙=0R
marep01ma.1 1˙=1R
smadiadetlem.p P=BaseSymGrpN
smadiadetlem.g G=mulGrpR
madetminlem.y Y=ℤRHomR
madetminlem.s S=pmSgnN
madetminlem.t ·˙=R
smadiadetlem.w W=BaseSymGrpNK
smadiadetlem.z Z=pmSgnNK
Assertion smadiadetlem3 MBKNRpqP|qK=KYSpRGnNKniNK,jNKiMjpn=RpWYZpRGnNKniNK,jNKiMjpn

Proof

Step Hyp Ref Expression
1 marep01ma.a A=NMatR
2 marep01ma.b B=BaseA
3 marep01ma.r RCRing
4 marep01ma.0 0˙=0R
5 marep01ma.1 1˙=1R
6 smadiadetlem.p P=BaseSymGrpN
7 smadiadetlem.g G=mulGrpR
8 madetminlem.y Y=ℤRHomR
9 madetminlem.s S=pmSgnN
10 madetminlem.t ·˙=R
11 smadiadetlem.w W=BaseSymGrpNK
12 smadiadetlem.z Z=pmSgnNK
13 eqid BaseR=BaseR
14 eqid CntzR=CntzR
15 crngring RCRingRRing
16 ringmnd RRingRMnd
17 3 15 16 mp2b RMnd
18 17 a1i MBKNRMnd
19 fvexd MBKNBaseSymGrpNKV
20 11 19 eqeltrid MBKNWV
21 1 2 3 4 5 6 7 8 9 10 11 12 smadiadetlem3lem1 MBKNpWYZpRGnNKniNK,jNKiMjpn:WBaseR
22 1 2 3 4 5 6 7 8 9 10 11 12 smadiadetlem3lem2 MBKNranpWYZpRGnNKniNK,jNKiMjpnCntzRranpWYZpRGnNKniNK,jNKiMjpn
23 eqid pWYZpRGnNKniNK,jNKiMjpn=pWYZpRGnNKniNK,jNKiMjpn
24 1 2 matrcl MBNFinRV
25 24 simpld MBNFin
26 25 adantr MBKNNFin
27 diffi NFinNKFin
28 eqid SymGrpNK=SymGrpNK
29 eqid BaseSymGrpNK=BaseSymGrpNK
30 28 29 symgbasfi NKFinBaseSymGrpNKFin
31 26 27 30 3syl MBKNBaseSymGrpNKFin
32 11 31 eqeltrid MBKNWFin
33 ovexd MBKNpWYZpRGnNKniNK,jNKiMjpnV
34 4 fvexi 0˙V
35 34 a1i MBKN0˙V
36 23 32 33 35 fsuppmptdm MBKNfinSupp0˙pWYZpRGnNKniNK,jNKiMjpn
37 fveq1 q=pqK=pK
38 37 eqeq1d q=pqK=KpK=K
39 38 cbvrabv qP|qK=K=pP|pK=K
40 eqid pqP|qK=KpNK=pqP|qK=KpNK
41 6 39 11 40 symgfixf1o NFinKNpqP|qK=KpNK:qP|qK=K1-1 ontoW
42 25 41 sylan MBKNpqP|qK=KpNK:qP|qK=K1-1 ontoW
43 13 4 14 18 20 21 22 36 42 gsumzf1o MBKNRpWYZpRGnNKniNK,jNKiMjpn=RpWYZpRGnNKniNK,jNKiMjpnpqP|qK=KpNK
44 eqid qP|qK=K=qP|qK=K
45 eqid NK=NK
46 6 44 11 45 symgfixelsi KNpqP|qK=KpNKW
47 46 adantll MBKNpqP|qK=KpNKW
48 eqidd MBKNpqP|qK=KpNK=pqP|qK=KpNK
49 fveq2 p=yYZp=YZy
50 fveq1 p=ypn=yn
51 50 oveq2d p=yniNK,jNKiMjpn=niNK,jNKiMjyn
52 51 mpteq2dv p=ynNKniNK,jNKiMjpn=nNKniNK,jNKiMjyn
53 52 oveq2d p=yGnNKniNK,jNKiMjpn=GnNKniNK,jNKiMjyn
54 49 53 oveq12d p=yYZpRGnNKniNK,jNKiMjpn=YZyRGnNKniNK,jNKiMjyn
55 54 cbvmptv pWYZpRGnNKniNK,jNKiMjpn=yWYZyRGnNKniNK,jNKiMjyn
56 55 a1i MBKNpWYZpRGnNKniNK,jNKiMjpn=yWYZyRGnNKniNK,jNKiMjyn
57 fveq2 y=pNKYZy=YZpNK
58 fveq1 y=pNKyn=pNKn
59 fvres nNKpNKn=pn
60 58 59 sylan9eq y=pNKnNKyn=pn
61 60 oveq2d y=pNKnNKniNK,jNKiMjyn=niNK,jNKiMjpn
62 61 mpteq2dva y=pNKnNKniNK,jNKiMjyn=nNKniNK,jNKiMjpn
63 62 oveq2d y=pNKGnNKniNK,jNKiMjyn=GnNKniNK,jNKiMjpn
64 57 63 oveq12d y=pNKYZyRGnNKniNK,jNKiMjyn=YZpNKRGnNKniNK,jNKiMjpn
65 47 48 56 64 fmptco MBKNpWYZpRGnNKniNK,jNKiMjpnpqP|qK=KpNK=pqP|qK=KYZpNKRGnNKniNK,jNKiMjpn
66 6 9 12 copsgndif NFinKNpqP|qK=KYZpNK=YSp
67 25 66 sylan MBKNpqP|qK=KYZpNK=YSp
68 67 imp MBKNpqP|qK=KYZpNK=YSp
69 68 oveq1d MBKNpqP|qK=KYZpNKRGnNKniNK,jNKiMjpn=YSpRGnNKniNK,jNKiMjpn
70 69 mpteq2dva MBKNpqP|qK=KYZpNKRGnNKniNK,jNKiMjpn=pqP|qK=KYSpRGnNKniNK,jNKiMjpn
71 65 70 eqtrd MBKNpWYZpRGnNKniNK,jNKiMjpnpqP|qK=KpNK=pqP|qK=KYSpRGnNKniNK,jNKiMjpn
72 71 oveq2d MBKNRpWYZpRGnNKniNK,jNKiMjpnpqP|qK=KpNK=RpqP|qK=KYSpRGnNKniNK,jNKiMjpn
73 43 72 eqtr2d MBKNRpqP|qK=KYSpRGnNKniNK,jNKiMjpn=RpWYZpRGnNKniNK,jNKiMjpn